Investigating Male Aedes aegypti (Diptera: Culicidae) Attraction to Different Oviposition Containers Using Various Configurations of the Sound Gravid Aedes Trap

2019 ◽  
Vol 57 (3) ◽  
pp. 957-961
Author(s):  
Kyran M Staunton ◽  
Barukh B Rohde ◽  
Michael Townsend ◽  
Jianyi Liu ◽  
Mark Desnoyer ◽  
...  

Abstract Aedes aegypti (Linnaeus), the primary vectors of the arboviruses dengue virus and Zika virus, continue to expand their global distributions. In efforts to better control such species, several mosquito control programs are investigating the efficacy of rearing and releasing millions of altered male Aedes throughout landscapes to reduce populations and disease transmission risk. Unfortunately, little is known about Ae. aegypti, especially male, dispersal behaviors within urban habitats. We deployed Sound-producing Gravid Aedes Traps (SGATs) in Cairns, northern Australia, to investigate male Ae. aegypti attraction to various oviposition container configurations. The traps were arranged to include: 1) water only, 2) organically infused water, 3) infused water and L3 larvae, 4) infused water and a human-scented lure, and lastly 5) no water or olfactory attractant (dry). Our data suggest that males were more attracted to SGATs representing active larval sites than potential larval sites, but were equally attracted to dry SGATs relative to those containing water and/or infusion. Additionally, we found that female Ae. aegypti were equally attracted to wet SGATs, with or without infusion, but not dry ones. These results suggest that male Ae. aegypti within northern Australia are more attracted to active larval sites and equally attracted to dry containers as wet or infused ones. Additionally, female Ae. aegypti are unlikely to enter dry containers. Such findings contribute to our understanding of potentially attractive features for local and released Ae. aegypti throughout the northern Australian urban landscape.

Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Tse-Yu Chen ◽  
Chelsea T. Smartt ◽  
Dongyoung Shin

Aedes aegypti, as one of the vectors transmitting several arboviruses, is the main target in mosquito control programs. Permethrin is used to control mosquitoes and Aedes aegypti get exposed due to its overuse and are now resistant. The increasing percentage of permethrin resistant Aedes aegypti has become an important issue around the world and the potential influence on vectorial capacity needs to be studied. Here we selected a permethrin resistant (p-s) Aedes aegypti population from a wild Florida population and confirmed the resistance ratio to its parental population. We used allele-specific PCR genotyping of the V1016I and F1534C sites in the sodium channel gene to map mutations responsible for the resistance. Two important factors, survival rate and vector competence, that impact vectorial capacity were checked. Results indicated the p-s population had 20 times more resistance to permethrin based on LD50 compared to the parental population. In the genotyping study, the p-s population had more homozygous mutations in both mutant sites of the sodium channel gene. The p-s adults survived longer and had a higher dissemination rate for dengue virus than the parental population. These results suggest that highly permethrin resistant Aedes aegypti populations might affect the vectorial capacity, moreover, resistance increased the survival time and vector competence, which should be of concern in areas where permethrin is applied.


2018 ◽  
Vol 147 ◽  
Author(s):  
Alberto J. Alaniz ◽  
Mario A. Carvajal ◽  
Antonella Bacigalupo ◽  
Pedro E. Cattan

AbstractZika virus (ZIKV) is an arbovirus transmitted mainly by Aedes aegypti mosquitoes. Recent scientific evidence on Culex quinquefasciatus has suggested its potential as a vector for ZIKV, which may change the current risk zones. We aimed to quantify the world population potentially exposed to ZIKV in a spatially explicit way, considering the primary vector (A. aegypti) and the potential vector (C. quinquefasciatus). Our model combined species distribution modelling of mosquito species with spatially explicit human population data to estimate ZIKV exposure risk. We estimated the potential global distribution of C. quinquefasciatus and estimated its potential interaction zones with A. aegypti. Then we evaluated the risk zones for ZIKV considering both vectors. Finally, we quantified and compared the people under risk associated with each vector by risk level, country and continent. We found that C. quinquefasciatus had a more temperate distribution until 42° in both hemispheres, while the risk involving A. aegypti is concentrated mainly in tropical latitudes until 35° in both hemispheres. Globally, 4.2 billion people are under risk associated with ZIKV. Around 2.6 billon people are under very high risk associated with C. quinquefasciatus and 1 billion people associated with A. aegypti. Several countries could be exposed to ZIKV, which emphasises the need to clarify the competence of C. quinquefasciatus as a potential vector as soon as possible. The models presented here represent a tool for risk management, public health planning, mosquito control and preventive actions, especially to focus efforts on the most affected areas.


2018 ◽  
Vol 6 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Roopa Rani Samal ◽  
Sarita Kumar

Background: Mosquito control is a major concern throughout the world because of rising cases of mosquito-borne diseases. The outbreak of Zika, Dengue and Chikungunya has caused grave situations raising urgent need to control Aedes aegypti. Moreover, extensive use of synthetic insecticides in mosquito control programs has resulted in high levels of insecticide resistance leading to the use of magnified concentrations, impacting human health and environment adversely. The knowledge about current status of the insecticide susceptibility against Ae. aegypti could help to devise mosquito control strategy. Objective: Present study evaluates the larvicidal potential of thirteen insecticides belonging to seven different classes; organochlorines, organophosphates, carbamates, pyrethroids, neonicotinoids, avermectins and secondary metabolites; against early fourth instars of Ae. aegypti. Materials and Methods: The insecticide susceptibility was evaluated as per WHO protocol. Fatality counts were made after 24h of exposure; and the LC50, LC90 and other statistical parameters were computed by probit-regression analysis. Results: The data reveals the maximum efficacy of pyrethroids and fenitrothion, with lethal values less than 0.001 ppm. Avermectins, organochlorines and carbamates were moderately toxic, while neonicotinoid posed appreciable toxicity. In contrast, berberine, a secondary plant metabolite was found inefficient. The larvicidal efficacy of tested insecticides against Ae. aegypti was found in the decreasing order of pyrethroids > organophosphates > avermectins > organochlorines > carbamates > neonicotinoids > secondary metabolites. Conclusion: Present investigations explore various toxicants as Dengue vector control agents in order to devise a suitable control strategy for mosquito control in fields.


2019 ◽  
Vol 56 (4) ◽  
pp. 1102-1111 ◽  
Author(s):  
Kyran M Staunton ◽  
Peter Yeeles ◽  
Michael Townsend ◽  
Somayeh Nowrouzi ◽  
Christopher J Paton ◽  
...  

AbstractAs the incidence of arboviral diseases such as dengue, Zika, chikungunya, and yellow fever increases globally, controlling their primary vector, Aedes aegypti (L.) (Diptera: Culicidae), is of greater importance than ever before. Mosquito control programs rely heavily on effective adult surveillance to ensure methodological efficacy. The Biogents Sentinel (BGS) trap is the gold standard for surveilling adult Aedes mosquitoes and is commonly deployed worldwide, including during modern ‘rear and release’ programs. Despite its extensive use, few studies have directly assessed environmental characteristics that affect BGS trap catches, let alone how these influences change during ‘rear and release’ programs. We assessed male and female Ae. aegypti spatial stability, as well as premises condition and trap location influences on BGS trap catches, as part of Debug Innisfail ‘rear and release’ program in northern Australia. We found similar trends in spatial stability of male and female mosquitoes at both weekly and monthly resolutions. From surveillance in locations where no males were released, reduced catches were found at premises that contained somewhat damaged houses and unscreened properties. In addition, when traps were located in areas that were unsheltered, more than 10 m from commonly used sitting areas or more visually complex catches were also negatively affected. In locations where males were released, we found that traps in treatment sites, relative to control sites, displayed increased catches in heavily shaded premises and were inconsistently influenced by differences in house sets and building materials. Such findings have valuable implications for a range of Ae. aegypti surveillance programs.


Author(s):  
Brendan J Trewin ◽  
Daniel E Pagendam ◽  
Myron P Zalucki ◽  
Jonathan M Darbro ◽  
Gregor J Devine ◽  
...  

Abstract Urban landscape features play an important role in the distribution and population spread of mosquito vectors. Furthermore, current insecticide and novel rear-and-release strategies for urban mosquito management rarely consider the spatial structure of the landscape when applying control practices. Here, we undertake a mark-recapture experiment to examine how urban features influence the movement and distribution of Australian container-inhabiting Aedes vectors. We pay attention to the role of semipermanent water storage containers, called rainwater tanks, and the influence of movement barriers, such as roads, on the spread and distribution of vector populations. Results suggest that Aedes aegypti (Linnaeus) (Diptera: Culicidae) were more likely to be captured around rainwater tanks, and that released males travel throughout residential blocks but do not cross roads. Conversely, female Aedes notoscriptus (Skuse) (Diptera: Culicidae) movement was uninhibited by roads and rainwater tanks did not influence female distribution or oviposition behavior. Using an isotropic Gaussian kernel framework, we show that vector movement is likely to be greater when applying a temporal effect, than when estimated by traditional methods. We conclude that a greater understanding on the role of urban features on vector movement will be important in the new age of rear-and-release mosquito control strategies, particularly those where estimations of movement are important for ensuring efficacy of application.


Author(s):  
Perran A. Ross ◽  
Xinyue Gu ◽  
Katie L. Robinson ◽  
Qiong Yang ◽  
Ellen Cottingham ◽  
...  

Aedes mosquitoes harboring intracellular Wolbachia bacteria are being released in arbovirus and mosquito control programs. With releases taking place around the world, understanding the contribution of host variation to Wolbachia phenotype is crucial. We generated a Wolbachia transinfection ( w AlbB Q ) in Aedes aegypti and performed backcrossing to introduce the infection into Australian or Malaysian nuclear backgrounds. Whole Wolbachia genome sequencing shows that the w AlbB Q transinfection is near-identical to the reference w AlbB genome, suggesting few changes since the infection was first introduced to Ae. aegypti over 15 years ago. However, these sequences were distinct from other available w AlbB genome sequences, highlighting the potential diversity of w AlbB in natural Ae. albopictus populations. Phenotypic comparisons demonstrate effects of w AlbB infection on egg hatch and nuclear background on fecundity and body size, but no interactions between w AlbB infection and nuclear background for any trait. The w AlbB infection was stable at high temperatures and showed perfect maternal transmission and cytoplasmic incompatibility regardless of host background. Our results demonstrate the stability of w AlbB across host backgrounds and point to its long-term effectiveness for controlling arbovirus transmission and mosquito populations. Importance Wolbachia bacteria are being used to control the transmission of dengue and other arboviruses by mosquitoes. For Wolbachia release programs to be effective globally, Wolbachia infections must be stable across mosquito populations from different locations. In this study, we transferred Wolbachia (strain w AlbB) to Aedes aegypti mosquitoes with an Australian genotype and introduced the infection to Malaysian mosquitoes through backcrossing. We found that the phenotypic effects of Wolbachia are stable across both mosquito backgrounds. We sequenced the genome of w AlbB and found very few genetic changes despite spending over 15 years in a novel mosquito host. Our results suggest that the effects of Wolbachia infections are likely to remain stable across time and host genotype.


2021 ◽  
Author(s):  
Perran A Ross ◽  
Xinyue Gu ◽  
Katie L Robinson ◽  
Qiong Yang ◽  
Ellen Cottingham ◽  
...  

Aedes mosquitoes harboring intracellular Wolbachia bacteria are being released in arbovirus and mosquito control programs. With releases taking place around the world, understanding the contribution of host variation to Wolbachia phenotype is crucial. We generated a Wolbachia transinfection (wAlbBQ) in Aedes aegypti and performed backcrossing to introduce the infection into Australian or Malaysian nuclear backgrounds. Whole Wolbachia genome sequencing shows that the wAlbBQ transinfection is near-identical to the reference wAlbB genome, suggesting few changes since the infection was first introduced to Ae. aegypti over 15 years ago. However, these sequences were distinct from other available wAlbB genome sequences, highlighting the potential diversity of wAlbB in natural Ae. albopictus populations. Phenotypic comparisons demonstrate effects of wAlbB infection on egg hatch and nuclear background on fecundity and body size, but no interactions between wAlbB infection and nuclear background for any trait. The wAlbB infection was stable at high temperatures and showed perfect maternal transmission and cytoplasmic incompatibility regardless of host background. Our results demonstrate the stability of wAlbB across host backgrounds and point to its long-term effectiveness for controlling arbovirus transmission and mosquito populations.


2019 ◽  
Vol 35 (4) ◽  
pp. 291-294 ◽  
Author(s):  
Fabian Correa-Morales ◽  
Martin Riestra-Morales ◽  
Wilbert Bibiano-Marín ◽  
Felipe Dzul-Manzanilla ◽  
Luis Felipe Del Castillo-Centeno ◽  
...  

ABSTRACT We evaluated the efficacy of bendiocarb (Ficam W® 80%) and pirimiphos-methyl (Actellic 300CS® 28.16%), applied to different surfaces potentially sprayable within houses during the application of a targeted indoor residual spraying (TIRS) against a field pyrethroid-resistant strain of Aedes aegypti. Bioassays with cones were performed on cement (walls), wood (doors), and textile (cloth) surfaces within typical houses in the Mexican city of Merida (n = 10). Optimal residual efficacy (>80% of mean mortality) of bendiocarb ranged from 3 months (cement) to 2 months (wood and textiles). Residual efficacy of pirimiphos-methyl ranged from 5 months (cement) to 2 months (wood and textiles). Both insecticides proved to be effective as adulticides against field Ae. aegypti and may be useful in mosquito control programs implementing TIRS with pyrethroid-resistant populations.


Author(s):  
Bethany L McGregor ◽  
C Roxanne Connelly

Abstract Aedes aegypti (L) is an anthropophilic mosquito involved in the transmission of a variety of viral pathogens worldwide including dengue, chikungunya, yellow fever, and Zika viruses. This species, native to Africa, is well established in the continental U.S. (CONUS) and occasionally contributes to localized outbreaks of viral diseases. In the last seven decades, mosquito control programs in the CONUS have been focused on vectors of eastern equine encephalitis, St. Louis encephalitis, and West Nile viruses, as well as nuisance species. Aedes aegypti receives little control focus except during outbreak periods, which has led to a lack of information on appropriate and effective control options targeting Ae. aegypti in the CONUS. As such, in the event of an Ae. aegypti-borne arboviral outbreak in the CONUS, there are limited evidence-based control recommendations or protocols in place. Autochthonous outbreaks of Ae. aegypti-borne pathogens have occurred recently in the CONUS, including dengue outbreaks in 2010 and 2013, a chikungunya outbreak in 2014, and the 2016 outbreak of Zika virus. The increasing frequency of Ae. aegypti-borne outbreaks necessitates increased attention and research on control of this species to prevent and mitigate future outbreaks. This review consolidates and synthesizes the available literature on control of Ae. aegypti, specifically within the CONUS, focusing on data generated through operational applications as well as field and semifield experiments. The purpose of this review is to identify and highlight areas where additional research is needed. The review covers chemical control and insecticide resistance, biological control, source reduction, trapping, and alternative techniques.


2021 ◽  
Vol 15 (9) ◽  
pp. e0009746
Author(s):  
Francisco Solis-Santoyo ◽  
Americo D. Rodriguez ◽  
R. Patricia Penilla-Navarro ◽  
Daniel Sanchez ◽  
Alfredo Castillo-Vera ◽  
...  

Background Insecticide use continues as the main strategy to control Aedes aegypti, the vector of dengue, Zika, chikungunya, and yellow fever. In the city of Tapachula, Mexico, mosquito control programs switched from pyrethroids to organophosphates for outdoor spatial spraying in 2013. Additionally, the spraying scheme switched from total coverage to focused control, prioritizing areas with higher entomological-virological risk. Five years after this strategy had been implemented, we evaluated the status and variability of insecticide resistance among Ae. aegypti collected at 26 sites in Tapachula. Methodology/Principal findings We determined the lethal concentrations at 50% of the tested populations (LC50) using a bottle bioassay, and then, we calculated the resistance ratio (RR) relative to the susceptible New Orleans strain. Permethrin and deltamethrin (pyrethroids), chlorpyrifos and malathion (organophosphates), and bendiocarb (carbamate) were tested. The frequencies of the substitutions V1016I and F1534C, which are in the voltage-gated sodium channel and confer knockdown-resistance (kdr) to pyrethroid insecticides, were calculated. Despite 5 years having passed since the removal of pyrethroids from the control programs, Ae. aegypti remained highly resistant to permethrin and deltamethrin (RR > 10-fold). In addition, following 5 years of chlorpyrifos use, mosquitoes at 15 of 26 sites showed moderate resistance to chlorpyrifos (5- to 10-fold), and the mosquitoes from one site were highly resistant. All sites had low resistance to malathion (< 5-fold). Resistance to bendiocarb was low at 19 sites, moderate at five, and high at two. Frequencies of the V1016I ranged from 0.16–0.71, while C1534 approached fixation at 23 sites (0.8–1). Resistance profiles and kdr allele frequencies varied across Tapachula. The variability was not associated with a spatial pattern at the scale of the sampling. Conclusion/Significance Mosquito populations respond to selection pressure at a focal scale in the field. Spatial variation across sites highlights the importance of testing multiple sites within geographical regions.


Sign in / Sign up

Export Citation Format

Share Document