Numerical Simulation on the Lubrication Performance of Surface Textured Piston Rings

2011 ◽  
Vol 199-200 ◽  
pp. 734-738 ◽  
Author(s):  
Qiu Ying Chang ◽  
Xian Liang Zheng ◽  
Qing Liu

Surface texturing has been successfully employed in some tribological applications in order to diminish friction and wear. This technology may be used in a piston ring to decrease the friction and wear of the contact between a piston ring and cylinder liner. A numerical simulation of lubrication between a surface textured piston ring and cylinder liner based on the hydrodynamic lubrication theory was conducted. The influence of surface texture parameters on piston ring lubrication performance was obtained by solving the mathematical equations with a multi-grid method. The results show that under the micro-dimple area density of 5%-40% the minimum oil film thickness increases and the dimensionless friction force decreases with the increasing of it. Under the dimple area density of 40%-60%, the minimum oil film thickness and the dimensionless friction force change slightly. Under various dimple area densities the optimum dimple depth at the given working condition in this paper is about 5µm.

Author(s):  
B Yang ◽  
Y Zhao

A simulation model is developed for the piston ring–cylinder liner lubrication problem in a CO2 refrigeration reciprocating compressor. Patir and Cheng’s modified Reynolds equation including pressure flow factors, shear flow factors, and shear stress factors is used to consider the effect of surface roughness on lubrication. The piston ring is assumed to be fully flooded at the leading edge, and both the cavitation case and fully flooded case are considered at the trailing edge. Modified Reynolds boundary condition is employed. The simulation results show that, the minimum oil film thickness has a maximum magnitude in the middle stroke region for downward stroke and upward stroke. In the vicinity of the dead centres, the magnitude of the friction force is much higher than that in the middle stroke region. The oil film pressure distribution along the piston ring thickness at different specified crank angles is indicated. The effects of ring thickness, crown height on minimum oil film thickness, and friction force are also investigated.


Author(s):  
Yibin Guo ◽  
Wanyou Li ◽  
Dequan Zou ◽  
Xiqun Lu ◽  
Tao He

In this paper a mixed lubrication model considering lubricant supply conditions on cylinder bore has been developed for the piston ring lubrication. The numerical procedures of both fully flooded and starved lubrication were included in the model. The lubrication equations and boundary conditions at the end of strokes were discussed in detail. The effects of piston ring design parameters, such as ring face profile and ring tension, on oil film thickness, friction force and power loss under fully flooded and starved lubrication conditions due to available lubricant supply on cylinder bore were studied. The simulation results show that the oil available in the inlet region of the oil film is important to the piston ring friction power loss. With different ring face crown heights and tensions, the changes of oil film thickness and friction force were apparent under fully flooded lubrication, but almost no changes were found under starved lubrication except at the end of a stroke. In addition, the oil film thickness and friction force were affected evidently by the ring face profile offsets under both fully flooded and starved lubrication conditions, and the offset towards the combustion chamber made a large contribution to forming thicker oil film during the expansion stroke. So under different lubricant supply conditions on the cylinder bore, the ring profile and tension need to be adjusted to reduce the friction and power loss. Moreover, the effects of lubricant viscosity, surface composite roughness, and engine operating speed on friction force and power loss were also discussed.


Author(s):  
Mohamed Kamal Ahmed Ali ◽  
Hou Xianjun ◽  
Richard Fiifi Turkson ◽  
Muhammad Ezzat

This paper presents a model to study the effect of piston ring dynamics on basic tribological parameters that affect the performance of internal combustion engines by using dynamics analysis software (AVL Excite Designer). The paramount tribological parameters include friction force, frictional power losses, and oil film thickness of piston ring assembly. The piston and rings assembly is one of the highest mechanically loaded components in engines. Relevant literature reports that the piston ring assembly accounts for 40% to 50% of the frictional losses, making it imperative for the piston ring dynamics to be understood thoroughly. This analytical study of the piston ring dynamics describes the significant correlation between the tribological parameters of piston and rings assembly and the performance of engines. The model was able to predict the effects of engine speed and oil viscosity on asperity and hydrodynamic friction forces, power losses, oil film thickness and lube oil consumption. This model of mixed film lubrication of piston rings is based on the hydrodynamic action described by Reynolds equation and dry contact action as described by the Greenwood–Tripp rough surface asperity contact model. The results in the current analysis demonstrated that engine speed and oil viscosity had a remarkable effect on oil film thickness and hydrodynamic friction between the rings and cylinder liner. Hence, the mixed lubrication model, which unifies the lubricant flow under different ring–liner gaps, is needed via the balance between the hydrodynamic and boundary lubrication modes to obtain minimum friction between rings and liner and to ultimately help in improving the performance of engines.


1974 ◽  
Vol 188 (1) ◽  
pp. 253-261 ◽  
Author(s):  
G. M. Hamilton ◽  
S. L. Moore

A capacity gauge has been designed for operating in the conditions of a working engine. The method of using it for determining the oil-film thickness and piston-ring profile is described. Oil-film thicknesses in the range 0·4-2·5 μm between the piston rings and the cylinder liner have been observed. Their variation with speed, load and temperature has been measured and it is concluded that their behaviour is essentially hydrodynamic.


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093084
Author(s):  
Brahim Menacer ◽  
Mostefa Bouchetara

For different operating conditions of an internal combustion engine, the piston–ring–liner compartment represents one of the largest sources of friction and power losses. The aim of this article is to evaluate the effect of the compression ring profile on the main tribological performance of the lubricant in a four-stroke diesel engine. A one-dimensional analysis was developed for the hydrodynamic lubrication between the compression piston ring and the cylinder wall. A numerical method was applied to analyze the influence of different ring geometrical designs during the working cycle on oil film thickness, frictional force, and power losses. Our predicted results were validated with the Takiguchi data of a previous study, and they have shown a good agreement. The results in the current analysis demonstrated that the ring geometry profile, the engine speed, and load have a remarkable effect on oil film thickness, friction force, and friction power losses between the top ring and cylinder liner. Therefore, it would help in reducing friction as well as making a contribution to the improvement of engine performance such as torque, efficiency, and fuel consumption.


Author(s):  
Kishore Mistry ◽  
D. V. Bhatt ◽  
N. R. Sheth

Frictional losses in an IC engine are observed between 17–19% of total induced horsepower. 35–45% frictional losses observed due to piston ring assembly only from the above-referred total frictional loss. Lubrication system is for reducing the frictional losses and under the total hydrodynamic lubrication system, if made it feasible, above referred losses can be reduced considerably. Wear normally observed at TDC and BDC during the power stroke. Experimental set-up is prepared by using used piston-cylinder assembly of an engine. Experiment methodology is adopted based on certain assumption and simulated the entire system with an extra drive system by an electric motor with a provision of various speed availability. Various pockets on cylinder liner of 2mm diameter are located on the periphery of cylinder liner to offer lubrication to the system. Care was taken to control the rate of lubrication flow with the help of control knob. Seven different profiles on piston ring were generated and measured. Friction force is calculated by power consumption measurement under different dynamic condition with a variation of 5-speed, 3- lubricants and different 8- types of piston ring geometry are experimented under different combination and results are tabulated. Graphs are plotted for friction force v/s speed for different lubricants and piston ring profiles. Effect of lubricants (SAE30, 15W40& 2T) and ring geometry are compared.


2020 ◽  
Vol 147 ◽  
pp. 106230
Author(s):  
Jiyeon Cheong ◽  
Stefan Wigger ◽  
Hans-Jürgen Füßer ◽  
Sebastian A. Kaiser

2019 ◽  
Vol 72 (1) ◽  
pp. 157-164
Author(s):  
Gu Xin ◽  
Xiao-Ri Liu ◽  
Dong-Kang Cheng ◽  
Qing-Ping Zheng ◽  
Meng-Han Li ◽  
...  

Purpose This paper aims to investigate the effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction. Design/methodology/approach A dynamic calculation model is established for the piston skirt-cylinder liner conjunction of a heavy-duty commercial diesel engine, to explore the effects of two kinds of lube oil viscosity models named after polyalkyle-metacrylate-1 (PAMA1) and styrene-isoprene-copolymer (SICP) improvers on the maximum oil film viscosity, the minimum oil film thickness, the peak oil film pressure, the maximum shear rate, the friction force and the total friction power loss. Findings The variation trends with the crank angle of the above parameters are not changed with the difference of improvers, while obvious numerical differences are found except the maximum oil film pressure. The minimum oil film thickness and maximum shear rate of PAMA1 are larger than that of SICP, the maximum oil film viscosity of SICP is larger than that of PAMA1, which indicates that the shear-thinning effect of PAMA1 is greater, the maximum friction force on the piston of SICP is larger than that of PAMA1, and the total friction power consumption is also larger, the average friction power consumptions of SICP and PAMA1 are 385.4 and 262.8 W, respectively, with the relative difference of 31.8 per cent. Originality/value The influence of different lubricating oil additive models on the lubrication and friction of piston skirt-cylinder liner conjunction is simulated and analyzed.


Sign in / Sign up

Export Citation Format

Share Document