Linking the spatiotemporal variation of litterfall to standing vegetation biomass in Brazilian savannas

2020 ◽  
Vol 13 (5) ◽  
pp. 517-524
Author(s):  
Alan N Costa ◽  
Jeane R Souza ◽  
Karyne M Alves ◽  
Anderson Penna-Oliveira ◽  
Geisciele Paula-Silva ◽  
...  

Abstract Aims Litterfall at a global scale is affected by climate, edaphic features and vegetation structure, with litter production increasing from grasslands to forests following the rise in standing biomass. However, at landscape scales, the same relationship between litter production and vegetation structure has rarely been studied and comparisons of litterfall patterns between adjacent, structurally distinct communities are lacking. Here, we use a standardized methodology to describe the structural differences among four savanna physiognomies and analyze their relationship with changes in litterfall across the Cerrado. Methods We evaluated the woody vegetation structure and composition in 48 sites, equally distributed across four physiognomies and monitored the monthly litter production from April 2014 to March 2015. Important Findings Results showed that the density, basal area, cylindrical volume and aboveground biomass of woody vegetation differ among physiognomies, increasing consistently from cerrado ralo, cerrado típico, cerrado denso and cerradão. Indeed, we found a strong and positive relationship between aboveground biomass and annual litter production, with litter yield increasing from 0.9 to 8.4 Mg ha−1 across different physiognomies, following the increment in vegetation structure. Monthly production was seasonal and similar among vegetation types, increasing during the dry season. Leaves comprised the dominant fraction (approx. 85%) and litterfall seasonality primarily resulted from the concentration of leaf shedding during dry months. However, the temporal pattern of litterfall throughout the year showed a gradual reduction in the seasonality from open to closed vegetation types, likely following the decrease of deciduous species abundance in the plant community. Our results showed that changes in vegetation structure may affect spatial and temporal litterfall patterns in different physiognomies, which co-occur across the Cerrado landscape, with potential implications for the overall functioning of this ecosystem. Moreover, these findings highlight the use of standardized methods as essential to correctly compare litterfall patterns among different environments.

2020 ◽  
Vol 36 (4) ◽  
pp. 133-149
Author(s):  
George K.D Ametsitsi ◽  
Frank Van Langevelde ◽  
Vincent Logah ◽  
Thomas Janssen ◽  
Jose A Medina-Vega ◽  
...  

AbstractWe analysed thirty-five 400-m2 plots encompassing forest, savanna and intermediate vegetation types in an ecotonal area in Ghana, West Africa. Across all plots, fire frequency was over a period of 15 years relatively uniform (once in 2–4 years). Although woodlands were dominated by species typically associated with savanna-type formations, and with forest formations dominated by species usually associated with closed canopies, these associations were non-obligatory and with a discrete non-specialized species grouping also identified. Across all plots, crown area index, stem basal area and above-ground biomass were positively associated with higher soil exchangeable potassium and silt contents: this supporting recent suggestions of interplays between potassium and soil water storage potential as a significant influence on tropical vegetation structure. We also found an average NDVI cover increase of ~0.15% year−1 (1984–2011) with plots dominated by non-specialized species increasing more than those dominated by either forest- or savanna-affiliated species. Our results challenge the traditional view of a simple forest vs. savanna dichotomy controlled by fire, and with our newly identified third non-specialized species grouping also potentially important in understanding ecotonal responses to climate change.


2005 ◽  
Vol 32 (3) ◽  
pp. 248-259 ◽  
Author(s):  
RAMAN KUMAR ◽  
GHAZALA SHAHABUDDIN

Despite the fact that tropical dry forests are being exploited on a large scale for various forest products, there has been limited evaluation of the accompanying ecological impacts. In particular, there is no information on the effects of widespread biomass extraction such as grazing and firewood collection. A study was carried out in Sariska Tiger Reserve in northern India, to investigate the effects of biomass extraction on forest vegetation composition, diversity and structure. Biomass extraction caused significant changes in forest vegetation structure and species composition in the tree layer but the extent of these changes varied across the three major vegetation types found in the Reserve. Anogeissus-dominated slope forest showed significantly lower mean canopy cover, tree density, tree basal area and height of trees in disturbed sites in comparison to undisturbed sites. Riparian forest showed lower mean canopy cover, tree basal areas and number of recorded tree species in disturbed sites. Scrub forest had lower mean canopy cover, tree basal area and tree height. There were fewer tall trees but greater number of short trees in disturbed sites of all three vegetation types. Girths of trees similarly shifted towards lower values in riparian and scrub forest. In Anogeissus-dominated forest, disturbed and undisturbed sites did not differ in proportions of trees in various girth-classes. Tree species richness was substantially lower in disturbed sites of Anogeissus-dominated and riparian forest in comparison to undisturbed sites, but was not affected by disturbance in scrub forest. Understorey species richness was higher in disturbed sites of all three vegetation types but understorey changed structurally only in Anogeissus-dominated forest. Overall tree and understorey species composition was significantly different between disturbed and undisturbed sites of Anogeissus-dominated forest, but was unchanged in scrub and riparian forest. Observed changes in vegetation structure, diversity and composition of the different vegetation types due to biomass extraction have implications for biodiversity conservation in tropical dry forest ecosystems, and need to be addressed in future forest management planning.


2001 ◽  
Vol 61 (3) ◽  
pp. 475-483 ◽  
Author(s):  
M. A. BATALHA ◽  
W. MANTOVANI ◽  
H. N. de MESQUITA JÚNIOR

We studied three cerrado physiognomies (campo cerrado, a savanna woodland; cerrado sensu stricto, a woodland; and cerradão, a tall woodland) in a reserve with 1,225 ha, in Santa Rita do Passa-Quatro (21°36-38'S and 47°36-39'W), São Paulo State, South-eastern Brazil, to compare plant communities structure. As descriptors of the vegetation structure, we used richness, density, basal area, cylindrical volume, and diversity. Ten 40 m² quadrats were placed randomly in each physiognomy, in which we sampled the woody plants with stem diameter equal or larger than 1 cm (woody component), and ten 2.5 m² quadrats, in which we sampled the woody plants with stem diameter smaller than 1 cm and all the non-woody individuals (herbaceous component). In the woody component, we found significant differences among the physiognomies for richness, density and cylindrical volume. Cylindrical volume increased from campo cerrado to cerradão, but richness and density were higher in cerrado sensu stricto. In the herbaceous component, we detected differences for all variables, which were higher in the savanna physiognomies, campo cerrado and cerrado sensu stricto, than in the forest physiognomy, cerradão. Cylindrical volume was the best variable to distinguish the physiognomies. Floristic similarity followed the campo cerrado-cerrado sensu stricto-cerradão gradient, and beta diversity was higher in the herbaceous component.


2021 ◽  
Vol 13 (23) ◽  
pp. 4859
Author(s):  
Yonglei Shi ◽  
Zhihui Wang ◽  
Liangyun Liu ◽  
Chunyi Li ◽  
Dailiang Peng ◽  
...  

Sparse mixed forest with trees, shrubs, and green herbaceous vegetation is a typical landscape in the afforestation areas in northwestern China. It is a great challenge to accurately estimate the woody aboveground biomass (AGB) of a sparse mixed forest with heterogeneous woody vegetation types and background types. In this study, a novel woody AGB estimation methodology (VI-AGB model stratified based on herbaceous vegetation coverage) using a combination of Landsat-8, GaoFen-2, and unmanned aerial vehicle (UAV) images was developed. The results show the following: (1) the woody and herbaceous canopy can be accurately identified using the object-based support vector machine (SVM) classification method based on UAV red-green-blue (RGB) images, with an average overall accuracy and kappa coefficient of 93.44% and 0.91, respectively; (2) compared with the estimation uncertainties of the woody coverage-AGB models without considering the woody vegetation types (RMSE = 14.98 t∙ha−1 and rRMSE = 96.31%), the woody coverage-AGB models stratified based on five woody species (RMSE = 5.82 t∙ha−1 and rRMSE = 37.46%) were 61.1% lower; (3) of the six VIs used in this study, the near-infrared reflectance of pure vegetation (NIRv)-AGB model performed best (RMSE = 7.91 t∙ha−1 and rRMSE = 50.89%), but its performance was still seriously affected by the heterogeneity of the green herbaceous coverage. The normalized difference moisture index (NDMI)-AGB model was the least sensitive to the background. The stratification-based VI-AGB models considering the herbaceous vegetation coverage derived from GaoFen-2 and UAV images can significantly improve the accuracy of the woody AGB estimated using only Landsat VIs, with the RMSE and rRMSE of 6.6 t∙ha−1 and 42.43% for the stratification-based NIRv-AGB models. High spatial resolution information derived from UAV and satellite images has a great potential for improving the woody AGB estimated using only Landsat images in sparsely vegetated areas. This study presents a practical method of estimating woody AGB in sparse mixed forest in dryland areas.


BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Bertrand Andriatsitohaina ◽  
Daniel Romero-Mujalli ◽  
Malcolm S. Ramsay ◽  
Frederik Kiene ◽  
Solofonirina Rasoloharijaona ◽  
...  

Abstract Background Edge effects can influence species composition and community structure as a result of changes in microenvironment and edaphic variables. We investigated effects of habitat edges on vegetation structure, abundance and body mass of one vulnerable Microcebus species in northwestern Madagascar. We trapped mouse lemurs along four 1000-m transects (total of 2424 trap nights) that ran perpendicular to the forest edge. We installed 16 pairs of 20 m2 vegetation plots along each transect and measured nine vegetation parameters. To determine the responses of the vegetation and animals to an increasing distance to the edge, we tested the fit of four alternative mathematical functions (linear, power, logistic and unimodal) to the data and derived the depth of edge influence (DEI) for all parameters. Results Logistic and unimodal functions best explained edge responses of vegetation parameters, and the logistic function performed best for abundance and body mass of M. ravelobensis. The DEI varied between 50 m (no. of seedlings, no. of liana, dbh of large trees [dbh ≥ 10 cm]) and 460 m (tree height of large trees) for the vegetation parameters, whereas it was 340 m for M. ravelobensis abundance and 390 m for body mass, corresponding best to the DEI of small tree [dbh < 10 cm] density (360 m). Small trees were significantly taller and the density of seedlings was higher in the interior than in the edge habitat. However, there was no significant difference in M. ravelobensis abundance and body mass between interior and edge habitats, suggesting that M. ravelobensis did not show a strong edge response in the study region. Finally, regression analyses revealed three negative (species abundance and three vegetation parameters) and two positive relationships (body mass and two vegetation parameters), suggesting an impact of vegetation structure on M. ravelobensis which may be partly independent of edge effects. Conclusions A comparison of our results with previous findings reveals that edge effects are variable in space in a small nocturnal primate from Madagascar. Such an ecological plasticity could be extremely relevant for mitigating species responses to habitat loss and anthropogenic disturbances.


2021 ◽  
Vol 13 (2) ◽  
pp. 257 ◽  
Author(s):  
Shaun R. Levick ◽  
Tim Whiteside ◽  
David A. Loewensteiner ◽  
Mitchel Rudge ◽  
Renee Bartolo

Savanna ecosystems are challenging to map and monitor as their vegetation is highly dynamic in space and time. Understanding the structural diversity and biomass distribution of savanna vegetation requires high-resolution measurements over large areas and at regular time intervals. These requirements cannot currently be met through field-based inventories nor spaceborne satellite remote sensing alone. UAV-based remote sensing offers potential as an intermediate scaling tool, providing acquisition flexibility and cost-effectiveness. Yet despite the increased availability of lightweight LiDAR payloads, the suitability of UAV-based LiDAR for mapping and monitoring savanna 3D vegetation structure is not well established. We mapped a 1 ha savanna plot with terrestrial-, mobile- and UAV-based laser scanning (TLS, MLS, and ULS), in conjunction with a traditional field-based inventory (n = 572 stems > 0.03 m). We treated the TLS dataset as the gold standard against which we evaluated the degree of complementarity and divergence of structural metrics from MLS and ULS. Sensitivity analysis showed that MLS and ULS canopy height models (CHMs) did not differ significantly from TLS-derived models at spatial resolutions greater than 2 m and 4 m respectively. Statistical comparison of the resulting point clouds showed minor over- and under-estimation of woody canopy cover by MLS and ULS, respectively. Individual stem locations and DBH measurements from the field inventory were well replicated by the TLS survey (R2 = 0.89, RMSE = 0.024 m), which estimated above-ground woody biomass to be 7% greater than field-inventory estimates (44.21 Mg ha−1 vs 41.08 Mg ha−1). Stem DBH could not be reliably estimated directly from the MLS or ULS, nor indirectly through allometric scaling with crown attributes (R2 = 0.36, RMSE = 0.075 m). MLS and ULS show strong potential for providing rapid and larger area capture of savanna vegetation structure at resolutions suitable for many ecological investigations; however, our results underscore the necessity of nesting TLS sampling within these surveys to quantify uncertainty. Complementing large area MLS and ULS surveys with TLS sampling will expand our options for the calibration and validation of multiple spaceborne LiDAR, SAR, and optical missions.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 935
Author(s):  
Mohammad Bataineh ◽  
Ethan Childs

The need for a comprehensive and mechanistic understanding of competition has never been more important as plants adapt to a changing environment and as forest management evolves to focus on maintaining and enhancing complexity. With the recent decline in shortleaf pine (Pinus echinata Mill.) land area, it is critical to determine the effects of competition on shortleaf pine and its performance against loblolly pine (Pinus taeda L.), the preferred planted replacement. We evaluate differences in shortleaf and loblolly pine 10 year mean basal area increment (BAI) and crown dimensions across a gradient of neighborhoods. Linear mixed-effects regression models were developed using BAI and several crown metrics as responses and crowding, competitor species abundance and identity, and initial size and species identity of focal tree as predictors. Crowding of focal trees negatively impacted BAI and crown size (p < 0.001, respectively). Although loblolly pine had three times higher BAI as compared to shortleaf pine within similar neighborhoods, BAI was variable, and the crowding effect did not differ between shortleaf and loblolly pine (p ranged from 0.51–0.99). Competitive impacts on focal trees did not differ by competitor identity (p ranged from 0.07–0.70). Distance-independent competition indices better explained the variation in BAI and horizontal crown metrics, while distance-dependent size ratios were more effective at evaluating vertical crown metrics. These findings highlight shortleaf pine competitive potential in mature, natural-origin stands and provide support for the restoration of pine–hardwood and hardwood–pine stratified mixtures as well as management of shortleaf pine at long rotations.


2021 ◽  
Vol 748 (1) ◽  
pp. 012009
Author(s):  
Agusyadi Ismail ◽  
Yayan Hendrayana ◽  
Dadan Ramadani ◽  
Sri Umiyati

Abstract Mount Ciremai National Park forest that area had been encroached. Because of that condition, stand structure especially the species composition and vegetation structure need to be researched. The aim of this research was to identify plant species and analyze forest vegetation structure. This research was conducted between March–April 2018 in the 15.500 ha area with 0.02% sampling intensity. Data was collected using grid line method that consisted of 34 sample plots with the 10 m distance between the plots and 20 m between the lines. The numbers of identified plant species at the research location were 43 species, classified by 10 families and 24 genera. Cinnamomum sintoc has a high level of dominance species. The forest vegetation was consisting by the different growth phases. The tree phase has the highest density of 3672 species/ha, while the seedling phase was lowest density of 1060 species/ha. The forest crown stratification were consisting of A, B, C, D and E stratum. The highest number of plants were from C strata for 4651 trees and the least from A strata with 25 trees with the highest tree was 42 m. Could be concluded that the composition of Mount Ciremai National Park forest have so many number of species and complex structure vegetation forest.


2021 ◽  
Vol 9 (1) ◽  
pp. 3201-3210
Author(s):  
Tedi Yunanto ◽  
Farisatul Amanah ◽  
Nabila Putri Wisnu

There are two regulations for mine reclamation success in the forestry area in Indonesia, namely Minister of Forestry Regulation No. P.60/Menhut-II/2009 and Minister of Energy and Mineral Resources Decree No. 1827.K/30/MEM/2018. Both regulations rule vegetation and soil success. This study aims to analyse criteria parameters from both regulations in the mine reclamation and compare them to the surrounding secondary natural forest (SNF). This study was conducted in 6 six types of mine reclamation stand structures: 1, 4, 6, 9, 11-year-old plantation and SNF using 1 hectare of the circular plot each (total 6 ha). Soil samples were collected from 40 cm depth to analyse physical, biological and chemical conditions. Mine reclamation areas had almost similar physical, biological and chemical soil conditions with SNF. Nevertheless, due to the potential acid-forming (PAF) material from overburden, the 1-year-old plantation had pH = 3.23-3.27. The highest diversity index and the number of species and families in all reclamation areas were H’ = 1.82 (11-year-old); 14 species (9-year-old); and 11 families (9-year-old), comparing with SNF were H’ = 3.48; 67 species, and 31 families. Conversely, vegetation structure parameters in mine reclamation areas were higher than SNF (diameter at height breast (DBH; 1.3 m) = 28.42 cm; tree density = 469/ha; basal area = 35.04 m2/ha; and total height = 16.85 m). Compared to the SNF, vegetation structure and soil conditions are mostly possible for mine reclamation success. Still, species composition needs to be considered further as a standard interval to meet the criteria.


2021 ◽  
Vol 16 (3) ◽  
pp. 755-763
Author(s):  
M. Nagaraj M. Nagaraj ◽  
M. Udayakumar

A forest tree inventory study was conducted in Vallanadu Black buck sanctuary, Tuticorin. The current study was conducted to assess tree density, species richness, basal area (BA) and aboveground biomass (AGB) stockpile. The study area has been classified as Southern Thorn Forest (SFT). One hundred square plots (total area 1 ha), each 10m × 10m (100 m2 each) laid randomly across study area. All live trees with ≥5 cm diameter at breast height (DBH) measured at 137 cm above the ground. As the whole, 1335 individual trees ≥5cm DBH recorded. A total number of 18 species recorded from 14 genera and 11 families in study area. The family Mimosaceae has maximum number of species (7 species) followed by Rhamnaceae (2 species), while 9 families had just single species’ each. The total basal area recorded was 22.046 m2 ha-1, while, the mean wood density (WD) of trees estimated as 0.70±0.093 g cm-3. Total amount of 50.065 Mg ha-1 present in STF. The contribution of different species in terms of total AGB varied significantly. Commiphora berryi stocked 45.13% (22.588 Mg ha-1) of AGB followed by A. planifrons (23.31%, 11.669 Mg ha-1), A. mellifera (7.233%, 3.621 Mg ha-1), whereas remaining 15 species collectively stocked 24.327% (12.187 Mg ha-1) AGB. The STF had a large number of trees compared to some dry forests within Tamil Nadu. Southern Thorn Forest endowed with a moderate number of trees species. Aboveground biomass stockpile of trees is comparable with the range recorded from Indian dry forests. The study area experiences lesser mean annual rainfall and >6 months dry season. Further, endowed with short-bole and smaller leaved trees, hence stocked a relatively lesser AGB in trees.


Sign in / Sign up

Export Citation Format

Share Document