Strong restrictions on the trait range of co-occurring species in the newly created riparian zone of the Three Gorges Reservoir Area, China

2019 ◽  
Vol 12 (5) ◽  
pp. 825-833 ◽  
Author(s):  
Aiying Zhang ◽  
Will Cornwell ◽  
Zhaojia Li ◽  
Gaoming Xiong ◽  
Dayong Fan ◽  
...  

Abstract Aims Community assembly links plant traits to particular environmental conditions. Numerous studies have adopted a trait-based approach to understand both community assembly processes and changes in plant functional traits along environmental gradients. In most cases these are long-established, natural or semi-natural environments. However, increasingly human activity has created, and continues to create, a range of new environmental conditions, and understanding community assembly in these ‘novel environments’ will be increasingly important. Methods Built in 2006, the Three Gorges Dam, largest hydraulic project in China, created a new riparian area of 384 km2, with massively altered hydrology. This large, newly created ecosystem is an ideal platform for understanding community assembly in a novel environment. We sampled environment variables and plant communities within 103 plots located in both the reservoir riparian zone (RRZ) and adjacent non-flooded and semi-natural upland (Upland) at the Three Gorges Reservoir Area. We measured six traits from 168 plant species in order to calculate community-level distribution of trait values. We expected that the altered hydrology in RRZ would have a profound effect on the community assembly process for the local plants. Important Findings Consistent with previous work on community assembly, the distribution of trait values (range, variance, kurtosis and the standard deviation of the distribution neighbor distances) within all plots was significantly lower than those from random distributions, indicating that both habitat filtering and limiting similarity simultaneously shaped the distributions of traits and the assembly of plant communities. Considering the newly created RRZ relative to nearby sites, community assembly was different in two main ways. First, there was a large shift in the mean trait values. Compared to Upland communities, plant communities in the RRZ had higher mean specific leaf area (SLA), higher nitrogen per unit leaf mass (Nmass), and lower maximum height (MH). Second, in the RRZ compared to the Upland, for the percentage of individual plots whose characteristic of trait values was lower than null distributions, the reductions in the community-level range for SLA, Nmass, nitrogen per unit leaf area (Narea) and phosphorus per unit leaf area (Parea) were much larger, suggesting that the habitat filter in this newly created riparian zone was much stronger compared to longer established semi-natural upland vegetation. This stronger filter, and the restriction to a subset of plants with very similar trait values, has implications for predicting riparian ecosystems’ responses to the hydrological alterations and further understanding for human’s effect on plant diversity and plant floras.

2014 ◽  
Vol 675-677 ◽  
pp. 371-376
Author(s):  
Ye Chun Wang ◽  
Bo Lei ◽  
Chun Hua Yang ◽  
Liang Ao ◽  
Ming Yang ◽  
...  

In last ten years, significant sedimentation has occurred, particularly in the lower portions of riparian zone of the Three Gorges Reservoir. However, the sediment and related environment effect did no explore well. In this study, sediment and soil in situ were collected in riparian zone, Three Gorges Reservoir, and heavy metals were analyzed and assessment. Results demonstrated:(1) concentration of heavy metals (except Cr and Ni) in sediment were significantly higher than those in soil; (2) sediment was moderately polluted by Cu and Pb, while soil were unpolluted-moderately polluted by As and Cu; (3) all of heavy metals both from sediment and soil are a potentially minor risk. Enrichment of heavy metals in riparian sediment is probably of formation regime and anthropogenic activities related pollutant emission. Therefore, enhanced control of water and soil, and pollution in the upper stream of the Yangtze River and the Three Gorges Reservoir area are recommended.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhangting Chen ◽  
Muhammad Arif ◽  
Chaoying Wang ◽  
Xuemei Chen ◽  
Changxiao Li

Foliar decomposition has significant effects on nutrient cycling and the productivity of riparian ecosystems, but studies on the impact of related hydrological dynamics have been lacking. Here, the litterbag method was carried out to compare decomposition and nutrient release characteristics in situ, including three foliage types [two single-species treatments using Taxodium distichum (L.) Rich., Salix matsudana Koidz., or a mixture with equal proportions of leaf mass], three flooding depths (unflooded, shallow flooding, and deep flooding), two hydrodynamic processes (continuous flooding and flooded-to-unflooded hydrological processes), and one hydrological cycle (1 year) in the riparian zone of the Three Gorges Reservoir. The results showed that both hydrological processes significantly promoted foliage decomposition, and all foliage types decomposed the fastest in a shallow flooding environment (P < 0.05). The mixed-species samples decomposed most quickly in the flooded hydrological process in the first half of the year and the unflooded hydrological process in the second half of the year. Flooding also significantly promoted the release of nutrients (P < 0.05). Mixed-species samples had the fastest release rates of carbon and nutrients in the flooded hydrological process in the first half of the year and the unflooded hydrological process in the second half of the year. Foliage decomposition was also closely related to environmental factors, such as water depth, temperature, and hydrological processes. Our research clarified the material cycling and energy flow process of the riparian ecosystem in the Three Gorges Reservoir area. It also provided a new reference for further understanding of foliage decomposition and nutrient release under different hydrological environments.


2021 ◽  
Vol 13 (8) ◽  
pp. 4288
Author(s):  
Siyue Sun ◽  
Guolin Zhang ◽  
Tieguang He ◽  
Shufang Song ◽  
Xingbiao Chu

In recent years, soil degradation and decreasing orchard productivity in the sloping orchards of the Three Gorges Reservoir Area of China have received considerable attention both inside and outside the country. More studies pay attention to the effects of topography on soil property changes, but less research is conducted from the landscape. Therefore, understanding the effects of landscape positions and landscape types on soil properties and chlorophyll content of citrus in a sloping orchard is of great significance in this area. Our results showed that landscape positions and types had a significant effect on the soil properties and chlorophyll content of citrus. The lowest soil nutrient content was detected in the upper slope position and sloping land, while the highest exists at the footslope and terraces. The chlorophyll content of citrus in the middle and upper landscape position was significantly higher than the footslope. The redundancy analysis showed that the first two ordination axes together accounted for 81.32% of the total variation, which could be explained by the changes of soil total nitrogen, total phosphorus, total potassium, available nitrogen, available potassium, organic matter, pH, and chlorophyll content of the citrus. Overall, this study indicates the significant influence of landscape positions and types on soil properties and chlorophyll content of citrus. Further, this study provides a reference for the determination of targeted land management measures and orchard landscape design so that the soil quality and orchard yield can be improved, and finally, the sustainable development of agriculture and ecology can be realized.


Sign in / Sign up

Export Citation Format

Share Document