Effects of Colchicine, Vinblastine, Cytochalasin B and Phalloidin on the Seismonastic Movement ofMimosa pudicaLeaf and on Motor Cell Ultrastructure

1988 ◽  
Vol 39 (2) ◽  
pp. 209-221 ◽  
Author(s):  
P. FLEURAT-LESSARD ◽  
G. ROBLIN ◽  
J. BONMORT ◽  
C. BESSE
1983 ◽  
Vol 245 (3) ◽  
pp. C196-C202 ◽  
Author(s):  
D. Chandler ◽  
G. Meusel ◽  
E. Schumaker ◽  
C. Stapleton

The ability of the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (FMLP) to stimulate beta-glucuronidase release and 45Ca2+ release from rabbit neutrophils was studied. FMLP stimulated enzyme release from cytochalasin B-treated cells either in the presence or the absence of extracellular calcium. Depletion of cell calcium, by exposure to either ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid or the calcium ionophore A23187, blocked the ability of FMLP to stimulate enzyme release and 45Ca2+ release in the absence of extracellular calcium. The ability of A23187 to lower the 45Ca2+ content of neutrophils, to block FMLP-stimulated 45Ca2+ release, and to inhibit FMLP-stimulated enzyme release in the absence of calcium was dose dependent over the same concentration range (10(-8) to 10(-6) M A23187) for all three actions. In contrast, FMLP stimulated enzyme release from A23187-treated cells, provided that extracellular calcium was present. This secretory response was normal as judged by cell ultrastructure and FMLP dose-response relationships. It is concluded that A23187 depletes a pool of intracellular calcium usually released by FMLP and that release of calcium from this pool is necessary for initiation of enzyme secretion in the absence of extracellular calcium.


Author(s):  
Awtar Krishan ◽  
Nestor Bohonos

Cytochalasin B, a mould metabolite from Helminthosporium dermatioideum has been shown to interfere with specific cell activities such as cytoplasmic cleavage and cell movement. Cells undergoing nuclear division in the presence of cytochalasin B are unable to complete the separation of the resulting daughter cells. In time-lapse studies, the daughter cells coalesce after an initial unsuccessful attempt at separation and form large multinucleate polyploid cells. The present report describes the fine structure of the large polyploid cells induced in Earle's L-cell monolayer cultures by exposure to cytochalasin B (lγ/ml) for 92 hours.In the present material we have seen as many as 7 nuclei in these polyploid cells. Treatment with cytochalasin B for longer periods of time (6 to 7 days, with one medium change on the 3rd day) did not increase the number of nuclei beyond the 7 nuclei stage. Figure 1 shows a large polyploid cell with four nuclei. These nuclei are indistinguishable in their fine structure from those of the cells from control cultures but often show unusually large numbers of cytoplasmic invaginations and extensions of the nuclear surface (Figure 2).


Author(s):  
D.A. Palmer ◽  
C.L. Bender

Coronatine is a non-host-specific phytotoxin produced by several members of the Pseudomonas syringae group of pathovars. The toxin acts as a virulence factor in P. syringae pv. tomato, allowing the organism to multiply to a higher population density and develop larger lesions than mutant strains unable to produce the toxin. The most prominent symptom observed in leaf tissue treated with coronatine is an intense spreading chlorosis; this has been attributed to a loss of chlorophylls a and b in tobacco. Coronatine's effects on membrane integrity and cell ultrastructure have not been previously investigated. The present study describes changes in tomato leaves in response to treatment with purified coronatine, infection by a coronatine-producing strain of P. syringae pv. tomato, and infection by a cor" mutant.In contrast to H2O-treated tissue, coronatine-treated tissue showed a diffuse chlorosis extending approximately 5 mm from the inoculation site. Leaf thickness, cell number, and cell dimensions were similar for both healthy and coronatine-treated, chlorotic tissue; however, the epidermal cell walls were consistently thicker in coronatine-treated leaves (Figs, la and lb).


2011 ◽  
Vol 19 (2) ◽  
pp. 388-393
Author(s):  
Xian-Qian NIU ◽  
Guo-Hua ZHENG ◽  
Xiu-Xiang LIN ◽  
Mei-Sheng WANG ◽  
Shu-Min FANG

Author(s):  
Ronald Tarazona Delgado ◽  
Mayara dos Santos Guarieiro ◽  
Paulo Wagnner Antunes ◽  
Sérvio Túlio Cassini ◽  
Haydee Montoya Terreros ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1929
Author(s):  
Tereza Cervena ◽  
Andrea Rossnerova ◽  
Tana Zavodna ◽  
Jitka Sikorova ◽  
Kristyna Vrbova ◽  
...  

The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.


1974 ◽  
Vol 249 (18) ◽  
pp. 5778-5783
Author(s):  
Shin Lin ◽  
James A. Spudich

Sign in / Sign up

Export Citation Format

Share Document