scholarly journals Hydrolysis of abscisic acid glucose ester occurs locally and quickly in response to dehydration

2020 ◽  
Vol 71 (6) ◽  
pp. 1753-1756
Author(s):  
Saad Hussain ◽  
Benjamin Paul Brookbank ◽  
Eiji Nambara

This article comments on: Han Y, Watanabe S, Shimada H, Sakamoto A. 2020. Dynamics of the leaf endoplasmic reticulum modulate β-glucosidase-mediated stress-activated ABA production from its glucosyl ester. Journal of Experimental Botany 71, 2058–2071.

2019 ◽  
Vol 71 (6) ◽  
pp. 2058-2071 ◽  
Author(s):  
Yiping Han ◽  
Shunsuke Watanabe ◽  
Hiroshi Shimada ◽  
Atsushi Sakamoto

Abstract The phytohormone abscisic acid (ABA) is produced via a multistep de novo biosynthesis pathway or via single-step hydrolysis of inactive ABA-glucose ester (ABA-GE). The hydrolysis reaction is catalyzed by β-glucosidase (BG, or BGLU) isoforms localized to various organelles, where they become activated upon stress, but the mechanisms underlying this organelle-specific activation remain unclear. We investigated the relationship between the subcellular distribution and stress-induced activation of BGLU18 (BG1), an endoplasmic reticulum enzyme critical for abiotic stress responses, in Arabidopsis thaliana leaves. High BGLU18 levels were present in leaf petioles, primarily in endoplasmic reticulum bodies. These Brassicaceae-specific endoplasmic reticulum-derived organelles responded dynamically to abiotic stress, particularly drought-induced dehydration, by changing in number and size. Under stress, BGLU18 distribution shifted toward microsomes, which was accompanied by increasing BGLU18-mediated ABA-GE hydrolytic activity and ABA levels in leaf petioles. Under non-stress conditions, impaired endoplasmic reticulum body formation caused a microsomal shift of BGLU18 and increased its enzyme activity; however, ABA levels increased only under stress, probably because ABA-GE is supplied to the endoplasmic reticulum only under these conditions. Loss of BGLU18 delayed dehydration-induced ABA accumulation, suggesting that ABA-GE hydrolysis precedes the biosynthesis. We propose that dynamics of the endoplasmic reticulum modulate ABA homeostasis and abiotic stress responses by activating BGLU18-mediated ABA-GE hydrolysis.


1999 ◽  
Vol 341 (2) ◽  
pp. 435-444 ◽  
Author(s):  
Jacqueline WHATMORE ◽  
Claudia WIEDEMANN ◽  
Pennti SOMERHARJU ◽  
Philip SWIGART ◽  
Shamshad COCKCROFT

Receptor-mediated phospholipase C (PLC) hydrolysis of phosphoinositides is accompanied by the resynthesis of phosphatidylinositol (PI). Hydrolysis of phosphoinositides occurs at the plasma membrane, and the resulting diacylglycerol (DG) is converted into phosphatidate (PA). Two enzymes located at the endoplasmic reticulum (ER) function sequentially to convert PA back into PI. We have established an assay whereby the resynthesis of PI could be followed in permeabilized cells. In the presence of [γ-32P]ATP, DG generated by PLC activation accumulates label when converted into PA. The 32P-labelled PA is subsequently converted into labelled PI. The formation of labelled PI reports the arrival of labelled PA from the plasma membrane to the ER. Cytosol-depleted, permeabilized human neutrophils are capable of PI resynthesis following stimulation of PLCβ (in the presence of phosphatidylinositol-transfer protein), provided that CTP and inositol are also present. We also found that wortmannin, an inhibitor of endocytosis, or cooling the cells to 15 °C did not stop PI resynthesis. We conclude that PI resynthesis is dependent neither on vesicular transport mechanisms nor on freely diffusible, soluble transport proteins. Phosphatidylcholine-derived PA generated by the ADP-ribosylation-factor-stimulated phospholipase D pathway was found to accumulate label, reflecting the rapid cycling of PA to DG, and back. This labelled PA was not converted into PI. We conclude that PA derived from the PLC pathway is selected for PI resynthesis, and its transfer to the ER could be membrane-protein-mediated at sites of close membrane contact.


1994 ◽  
Vol 15 (2) ◽  
pp. 157-163 ◽  
Author(s):  
Paolo Vernieri ◽  
Alberto Pardossi ◽  
Giovanni Serra ◽  
Franco Tognoni

1989 ◽  
Vol 9 (3) ◽  
pp. 290-303 ◽  
Author(s):  
K. Schmidt ◽  
G. Lucignani ◽  
K. Mori ◽  
T. Jay ◽  
E. Palombo ◽  
...  

A translocase to transport hexose phosphate formed in the cytosol into the cisterns of the endoplasmic reticulum, where the phosphatase resides, is absent in brain (Fishman and Karnovsky, 1986). 2-Deoxyglucose-6-phosphate (DG-6-P) may therefore have limited access to glucose-6-phosphatase (G-6-Pase), and transport of the DG-6-P across the endoplasmic reticular membrane may be rate limiting to its dephosphorylation. To take this compartmentation into account, a five-rate constant (5K) model was developed to describe the kinetic behavior of 2-deoxyglucose (DG) and its phosphorylated product in brain. Loss of DG-6-P was modeled as a two-step process: (a) transfer of DG-6-P from the cytosol into the cisterns of the endoplasmic reticulum; (b) hydrolysis of DG-6-P by G-6-Pase and subsequent return of the free DG to the precursor pool. Local CMRglc (LCMRglc) was calculated in the rat on the basis of this model and compared with values calculated on the basis of the three-rate constant (3K) and the four–rate constant (4K) models of the DG method. The results show that under normal physiological conditions all three models yield values of LCMRglc that are essentially equivalent for experimental periods between 25 and 45 min. Therefore, the simplest model, the 3K model, is sufficient. For experimental periods from 60 to 120 min, the 4K and 5K models do not correct completely for loss of product, but the 5K model does yield estimates of LCMRglc that are closer to the values at 45 min than those obtained with the 3K and 4K models.


2002 ◽  
Vol 115 (3) ◽  
pp. 499-505 ◽  
Author(s):  
Julian A. Guttman ◽  
Paul Janmey ◽  
A. Wayne Vogl

The gelsolin-phosphoinositide pathway may be part of the normal mechanism by which Sertoli cells regulate sperm release and turnover of the blood-testis barrier. The intercellular adhesion complexes (ectoplasmic specializations)involved with these two processes are tripartite structures consisting of the plasma membrane, a layer of actin filaments and a cistern of endoplasmic reticulum. Gelsolin is concentrated in these adhesion complexes. In addition,phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and phosphoinositide-specific phospholipase C are found in the structures. Treatment of isolated spermatid/junction complexes with exogenous phosphoinositide-specific phospholipase C, or with a synthetic peptide consisting of the PtdIns(4,5)P2 binding region of gelsolin, results in the release of gelsolin and loss of actin from the adhesion complexes. We present a model for the disassembly of the actin layer of the adhesion complex that involves the hydrolysis of PtdIns(4,5)P2 resulting in the release of gelsolin within the plaque. Further, we speculate that the hydrolysis of PtdIns(4,5)P2 may result in a local Ca2+ surge via the action of inositol triphosphate on junctional endoplasmic reticulum. This Ca2+ surge would facilitate the actin severing function of gelsolin within the adhesion complex.


1989 ◽  
Vol 259 (3) ◽  
pp. 913-916 ◽  
Author(s):  
J A Higgins ◽  
B W Hitchin ◽  
M G Low

Phosphatidylinositol-specific phospholipase C (PI-PLC) produced by Bacillus thuringiensis has been used as a probe for the distribution of phosphatidylinositol in hepatocyte membranes. Approx. 50% of this phospholipid was hydrolysed in microsomal vesicles (endoplasmic reticulum) with no significant hydrolysis of the remaining membrane phospholipids. Latency of mannose-6-phosphatase was retained during treatment indicating that the vesicles remained impermeable. Stripping of the ribosomes did not increase hydrolysis of phosphatidylinositol; however, when the vesicles were opened using dilute sodium carbonate, hydrolysis increased to greater than 90%. Hydrolysis of phosphatidylinositol of Golgi membranes was 35% and of plasma membranes was 50%. After treatment with PI-PLC, radiolabelled secretory proteins were retained in Golgi membranes and trapped lactate dehydrogenase was retained in plasma-membrane preparations indicating that the vesicles remained closed. Hydrolysis of phosphatidylinositol increased to greater than 90% when the membranes were opened by treatment with dilute sodium carbonate. These observations indicate that PI-PLC of Bacillus thuringiensis is a suitable probe for the distribution of phosphatidylinositol in membranes, and that in liver membranes this phospholipid occurs on each side of the bilayer, a topography consistent with its diverse roles.


Planta ◽  
1983 ◽  
Vol 157 (4) ◽  
pp. 371-375 ◽  
Author(s):  
S. J. Neill ◽  
R. Horgan ◽  
J. K. Heald
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document