scholarly journals GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways

Author(s):  
Alaeddine Safi ◽  
Anna Medici ◽  
Wojciech Szponarski ◽  
Florence Martin ◽  
Anne Clément-Vidal ◽  
...  

Abstract Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3− provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.4 and NRT2.5) and other sentinel genes involved in N remobilization such as GDH3. Using a combination of functional genomics via transcription factor perturbation and molecular physiology studies, we show that the transcription factors belonging to the HHO subfamily are important regulators of NSR through two potential mechanisms. First, HHOs directly repress the high-affinity nitrate transporters, NRT2.4 and NRT2.5. hho mutants display increased high-affinity nitrate transport activity, opening up promising perspectives for biotechnological applications. Second, we show that reactive oxygen species (ROS) are important to control NSR in wild-type plants and that HRS1 and HHO1 overexpressors and mutants are affected in their ROS content, defining a potential feed-forward branch of the signaling pathway. Taken together, our results define the relationships of two types of molecular players controlling the NSR, namely ROS and the HHO transcription factors. This work (i) up opens perspectives on a poorly understood nutrient-related signaling pathway and (ii) defines targets for molecular breeding of plants with enhanced NO3− uptake.

2018 ◽  
Author(s):  
Alaeddine Safi ◽  
Anna Medici ◽  
Wojciech Szponarski ◽  
Amy Marshall-Colon ◽  
Sandrine Ruffel ◽  
...  

AbstractPlants need to cope with strong variations in the nitrogen content of the soil solution. Although many molecular actors are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of Nitrogen. Indeed, following N removal plants activate their Nitrogen Starvation Response (NSR) being characterized in particular by the activation of very high affinity nitrate transport systems (NRT2.4, NRT2.5) and other sentinel genes such as GDH3. Here we show using a combination of functional genomics (via TF perturbation) and molecular physiology studies, that the GARP Transcription Factors (TFs) belonging the HHO sub-family are important regulators of the NSR through two potential mechanisms. First, HHOs directly repress NRT2.4 and NRT2.5 high-affinity nitrate transporters. Genotypes affected in HHO genes (mutants and overexpressors) display modified high-affinity nitrate transport activities opening interesting perspectives in biotechnology applications. Second, we show that Reactive Oxygen Species (ROS) are important to control NSR in wild type plants and that HRS1 and HHO1 overexpressors are affected in their ROS content, defining a potential feedforward branch of the signaling pathway. Taken together our results define two new classes of molecular actors in the control of NSR including ROS and the first transcription factors to date. This work (i) opens perspectives on a poorly understood nutrient related signaling pathway, and (ii) defines targets for molecular breeding of plants with enhanced NO3- uptake.


2018 ◽  
Vol 23 (1) ◽  
pp. 111-117
Author(s):  
Lekshmy Sathee ◽  
Sandeep B. Adavi ◽  
Vanita Jain ◽  
Renu Pandey ◽  
Sangeeta Khetarpal ◽  
...  

2013 ◽  
Vol 163 (3) ◽  
pp. 1103-1106 ◽  
Author(s):  
Anthony D.M. Glass ◽  
Zorica Kotur

2007 ◽  
Vol 49 (12) ◽  
pp. 1719-1725 ◽  
Author(s):  
Chao Cai ◽  
Xue-Qiang Zhao ◽  
Yong-Guan Zhu ◽  
Bin Li ◽  
Yi-Ping Tong ◽  
...  

1997 ◽  
Vol 17 (6) ◽  
pp. 2994-3004 ◽  
Author(s):  
M Kaouass ◽  
M Audette ◽  
D Ramotar ◽  
S Verma ◽  
D De Montigny ◽  
...  

Eukaryotic polyamine transport systems have not yet been characterized at the molecular level. We have used transposon mutagenesis to identify genes controlling polyamine transport in Saccharomyces cerevisiae. A haploid yeast strain was transformed with a genomic minitransposon- and lacZ-tagged library, and positive clones were selected for growth resistance to methylglyoxal bis(guanylhydrazone) (MGBG), a toxic polyamine analog. A 747-bp DNA fragment adjacent to the lacZ fusion gene rescued from one MGBG-resistant clone mapped to chromosome X within the coding region of a putative Ser/Thr protein kinase gene of previously unknown function (YJR059w, or STK2). A 304-amino-acid stretch comprising 11 of the 12 catalytic subdomains of Stk2p is approximately 83% homologous to the putative Pot1p/Kkt8p (Stk1p) protein kinase, a recently described activator of low-affinity spermine uptake in yeast. Saturable spermidine transport in stk2::lacZ mutants had an approximately fivefold-lower affinity and twofold-lower Vmax than in the parental strain. Transformation of stk2::lacZ cells with the STK2 gene cloned into a single-copy expression vector restored spermidine transport to wild-type levels. Single mutants lacking the catalytic kinase subdomains of STK1 exhibited normal parameters for the initial rate of spermidine transport but showed a time-dependent decrease in total polyamine accumulation and a low-level resistance to toxic polyamine analogs. Spermidine transport was repressed by prior incubation with exogenous spermidine. Exogenous polyamine deprivation also derepressed residual spermidine transport in stk2::lacZ mutants, but simultaneous disruption of STK1 and STK2 virtually abolished high-affinity spermidine transport under both repressed and derepressed conditions. On the other hand, putrescine uptake was also deficient in stk2::lacZ mutants but was not repressed by exogenous spermidine. Interestingly, stk2::lacZ mutants showed increased growth resistance to Li+ and Na+, suggesting a regulatory relationship between polyamine and monovalent inorganic cation transport. These results indicate that the putative STK2 Ser/Thr kinase gene is an essential determinant of high-affinity polyamine transport in yeast whereas its close homolog STK1 mostly affects a lower-affinity, low-capacity polyamine transport activity.


FEBS Letters ◽  
2000 ◽  
Vol 481 (1) ◽  
pp. 88-88
Author(s):  
Jing-Jiang Zhou ◽  
Emilio Fernández ◽  
Aurora Galván ◽  
Anthony J. Miller

2000 ◽  
Vol 14 (14) ◽  
pp. 1741-1749 ◽  
Author(s):  
Ken-ichi Tago ◽  
Tsutomu Nakamura ◽  
Michiru Nishita ◽  
Junko Hyodo ◽  
Shin-ichi Nagai ◽  
...  

Wnt signaling has an important role in both embryonic development and tumorigenesis. β-Catenin, a key component of the Wnt signaling pathway, interacts with the TCF/LEF family of transcription factors and activates transcription of Wnt target genes. Here, we identify a novel β-catenin-interacting protein, ICAT, that was found to inhibit the interaction of β-catenin with TCF-4 and represses β-catenin–TCF-4-mediated transactivation. Furthermore, ICAT inhibited Xenopus axis formation by interfering with Wnt signaling. These results suggest that ICAT negatively regulates Wnt signaling via inhibition of the interaction between β-catenin and TCF and is integral in development and cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document