scholarly journals A Reevaluation of the Role of Arabidopsis NRT1.1 in High-Affinity Nitrate Transport

2013 ◽  
Vol 163 (3) ◽  
pp. 1103-1106 ◽  
Author(s):  
Anthony D.M. Glass ◽  
Zorica Kotur
2020 ◽  
Vol 65 (1) ◽  
pp. 28-41
Author(s):  
Marwa Aly Ahmed ◽  
Júlia Erdőssy ◽  
Viola Horváth

Multifunctional nanoparticles have been shown earlier to bind certain proteins with high affinity and the binding affinity could be enhanced by molecular imprinting of the target protein. In this work different initiator systems were used and compared during the synthesis of poly (N-isopropylacrylamide-co-acrylic acid-co-N-tert-butylacrylamide) nanoparticles with respect to their future applicability in molecular imprinting of lysozyme. The decomposition of ammonium persulfate initiator was initiated either thermally at 60 °C or by using redox activators, namely tetramethylethylenediamine or sodium bisulfite at low temperatures. Morphology differences in the resulting nanoparticles have been revealed using scanning electron microscopy and dynamic light scattering. During polymerization the conversion of each monomer was followed in time. Striking differences were demonstrated in the incorporation rate of acrylic acid between the tetramethylethylenediamine catalyzed initiation and the other systems. This led to a completely different nanoparticle microstructure the consequence of which was the distinctly lower lysozyme binding affinity. On the contrary, the use of sodium bisulfite activation resulted in similar nanoparticle structural homogeneity and protein binding affinity as the thermal initiation.


Author(s):  
Stefan Gründer

Acid-sensing ion channels (ASICs) are proton-gated Na+ channels. Being almost ubiquitously present in neurons of the vertebrate nervous system, their precise function remained obscure for a long time. Various animal toxins that bind to ASICs with high affinity and specificity have been tremendously helpful in uncovering the role of ASICs. We now know that they contribute to synaptic transmission at excitatory synapses as well as to sensing metabolic acidosis and nociception. Moreover, detailed characterization of mouse models uncovered an unanticipated role of ASICs in disorders of the nervous system like stroke, multiple sclerosis, and pathological pain. This review provides an overview on the expression, structure, and pharmacology of ASICs plus a summary of what is known and what is still unknown about their physiological functions and their roles in diseases.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 164
Author(s):  
Lina Son ◽  
Elena Kryukova ◽  
Rustam Ziganshin ◽  
Tatyana Andreeva ◽  
Denis Kudryavtsev ◽  
...  

Cobra venoms contain three-finger toxins (TFT) including α-neurotoxins efficiently binding nicotinic acetylcholine receptors (nAChRs). As shown recently, several TFTs block GABAA receptors (GABAARs) with different efficacy, an important role of the TFTs central loop in binding to these receptors being demonstrated. We supposed that the positive charge (Arg36) in this loop of α-cobratoxin may explain its high affinity to GABAAR and here studied α-neurotoxins from African cobra N. melanoleuca venom for their ability to interact with GABAARs and nAChRs. Three α-neurotoxins, close homologues of the known N. melanoleuca long neurotoxins 1 and 2, were isolated and sequenced. Their analysis on Torpedocalifornica and α7 nAChRs, as well as on acetylcholine binding proteins and on several subtypes of GABAARs, showed that all toxins interacted with the GABAAR much weaker than with the nAChR: one neurotoxin was almost as active as α-cobratoxin, while others manifested lower activity. The earlier hypothesis about the essential role of Arg36 as the determinant of high affinity to GABAAR was not confirmed, but the results obtained suggest that the toxin loop III may contribute to the efficient interaction of some long-chain neurotoxins with GABAAR. One of isolated toxins manifested different affinity to two binding sites on Torpedo nAChR.


2021 ◽  
Author(s):  
Amit Ketkar ◽  
Lane Smith ◽  
Callie Johnson ◽  
Alyssa Richey ◽  
Makayla Berry ◽  
...  

Abstract We previously reported that human Rev1 (hRev1) bound to a parallel-stranded G-quadruplex (G4) from the c-MYC promoter with high affinity. We have extended those results to include other G4 motifs, finding that hRev1 exhibited stronger affinity for parallel-stranded G4 than either anti-parallel or hybrid folds. Amino acids in the αE helix of insert-2 were identified as being important for G4 binding. Mutating E466 and Y470 to alanine selectively perturbed G4 binding affinity. The E466K mutant restored wild-type G4 binding properties. Using a forward mutagenesis assay, we discovered that loss of hRev1 increased G4 mutation frequency >200-fold compared to the control sequence. Base substitutions and deletions occurred around and within the G4 motif. Pyridostatin (PDS) exacerbated this effect, as the mutation frequency increased >700-fold over control and deletions upstream of the G4 site more than doubled. Mutagenic replication of G4 DNA (±PDS) was partially rescued by wild-type and E466K hRev1. The E466A or Y470A mutants failed to suppress the PDS-induced increase in G4 mutation frequency. These findings have implications for the role of insert-2, a motif conserved in vertebrates but not yeast or plants, in Rev1-mediated suppression of mutagenesis during G4 replication.


1996 ◽  
Vol 271 (6) ◽  
pp. C1963-C1972 ◽  
Author(s):  
D. J. Culp ◽  
W. Luo ◽  
L. A. Richardson ◽  
G. E. Watson ◽  
L. R. Latchney

We investigated the role of M1 and M3 receptors in regulating exocrine secretion from acini isolated from rat sublingual glands. In secretion experiments, we derived affinity values (KB) from Schild regression analysis for the antagonists pirenzepine (61.0 nM) and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 1.06 nM). The KB for 4-DAMP is similar to its affinity value [equilibrium dissociation constant from competition studies (Ki); 1.81 nM] determined from radioligand competition experiments. In contrast, the KB for pirenzepine is between its high-affinity (17.6 nM) and low-affinity (404 nM) Ki values. In separate secretion experiments, we found that the M1 receptor antagonist, M1-toxin, induces a rightward shift in the concentration-response curve to muscarinic agonist and inhibits maximal secretion by 40%. The inhibitory effect of M1-toxin appears specific for M1 receptor blockade, since the toxin abolishes acinar high-affinity pirenzepine-binding sites and does not inhibit secretion induced by nonmuscarinic agents. Additional pharmacological studies indicate muscarinic receptors do not function through putative neural elements within isolated acini. Our combined results are consistent with both M1 and M3 receptors directly regulating mucous acinar exocrine secretion and indicate M3 receptors alone are insufficient to induce a maximal muscarinic response.


2013 ◽  
Vol 305 (2) ◽  
pp. E194-E204 ◽  
Author(s):  
Natasa J. Stojkov ◽  
Marija M. Janjic ◽  
Aleksandar Z. Baburski ◽  
Aleksandar I. Mihajlovic ◽  
Dragana M. Drljaca ◽  
...  

This study was designed to systematically analyze and evaluate the effects of in vivo blockade of α1-adrenergic receptors (α1-ADRs) on the stress-induced disturbance of steroidogenic machinery in Leydig cells. Parameters followed 1) steroidogenic enzymes/proteins, transcription factors, and cAMP/testosterone production; 2) the main hallmarks of stress (epinephrine, glucocorticoids); and 3) transcription profiles of ADRs and oxidases with high affinity to inactivate glucocorticoids. Results showed that sustained blockade of α1-ADRs prevented stress-induced 1) decrease of the transcripts/proteins for main steroidogenic CYPs (CYP11A1, CYP17A1); 2) decrease of Scarb1 and Hsd3b1 transcripts; 3) decrease of transcript for Nur77, one of the main activator of the steroidogenic expression; and 4) increase of Dax1 and Arr19, the main steroidogenic repressors in Leydig cells. In the same cells, the expression of steroidogenic stimulatory factor Creb1, StAR, and androgen receptor increased. In this signaling scenario, stress-induced stimulation of Adra1a/Adra1b/Adrbk1 and Hsd11b2 (the unidirectional oxidase with high affinity to inactivate glucocorticoids) was not changed. Blockade additionally stimulated stress-increased transcription of the most abundantly expressed ADRs Adra1d/Adrb1/Adrb2 in Leydig cells. In the same cells, stress-decreased testosterone production, the main marker of Leydig cells functionality, was completely prevented, while reduction of cAMP, the main regulator of androgenesis, was partially prevented. Accordingly, the presented data provide a new molecular/transcriptional base for “fight/adaptation” of steroidogenic cells and new molecular insights into the role of α1-ADRs in stress-impaired Leydig cell steroidogenesis. The results are important in term of wide use of α1-ADR selective antagonists, alone/in combination, to treat high blood pressure, nightmares associated with posttraumatic stress disorder, and disrupted sexual health.


2015 ◽  
Vol 308 (8) ◽  
pp. C631-C641 ◽  
Author(s):  
Michele Visentin ◽  
Ersin Selcuk Unal ◽  
Mitra Najmi ◽  
Andras Fiser ◽  
Rongbao Zhao ◽  
...  

The proton-coupled folate transporter (PCFT) mediates intestinal folate absorption and transport of folates across the choroid plexus. This study focuses on the role of Tyr residues in PCFT function. The substituted Cys-accessibility method identified four Tyr residues (Y291, Y362, Y315, and Y414) that are accessible to the extracellular compartment; three of these (Y291, Y362, and Y315) are located within or near the folate binding pocket. When the Tyr residues were replaced with Cys or Ala, these mutants showed similar (up to 6-fold) increases in influx Vmax and Kt/ Ki for [3H]methotrexate and [3H]pemetrexed. When the Tyr residues were replaced with Phe, these changes were moderated or absent. When Y315A PCFT was used as representative of the mutants and [3H]pemetrexed as the transport substrate, this substitution did not increase the efflux rate constant. Furthermore, neither influx nor efflux mediated by Y315A PCFT was transstimulated by the presence of substrate in the opposite compartment; however, substantial bidirectional transstimulation of transport was mediated by wild-type PCFT. This resulted in a threefold greater efflux rate constant for cells that express wild-type PCFT than for cells that express Y315 PCFT under exchange conditions. These data suggest that these Tyr residues, possibly through their rigid side chains, secure the carrier in a high-affinity state for its folate substrates. However, this may be achieved at the expense of constraining the carrier's mobility, thereby decreasing the rate at which the protein oscillates between its conformational states. The Vmax generated by these Tyr mutants may be so rapid that further augmentation during transstimulation may not be possible.


Endocrinology ◽  
1986 ◽  
Vol 118 (3) ◽  
pp. 990-998 ◽  
Author(s):  
VENKAT GOPALAKRISHNAN ◽  
CHRIS R. TRIGGLE ◽  
PRAKASH V. SULAKHE ◽  
J. ROBERT McNEILL

Sign in / Sign up

Export Citation Format

Share Document