Poplar MYB117 promotes anthocyanin synthesis and enhances flavonoid B-ring hydroxylation by upregulating the flavonoid 3’,5’-hydroxylase gene

Author(s):  
Dawei Ma ◽  
Hao Tang ◽  
Michael Reichelt ◽  
Eerik-Mikael Piirtola ◽  
Juha-Pekka Salminen ◽  
...  

Abstract Flavonoids such as anthocyanins, proanthocyanidins and flavonols, are widespread plant secondary metabolites and important for plant adaptation to diverse abiotic and biotic stresses. Flavonoids can be variously hydroxylated and decorated; their biological activity is partly dependent on the degree of hydroxylation of the B-ring. Flavonoid biosynthesis is regulated by MYB transcription factors, which have been identified and characterized in a diversity of plants. Here we characterize a new MYB activator, MYB117, in hybrid poplar (Populus tremula x tremuloides). When overexpressed in transgenic poplar plants, MYB117 enhanced anthocyanin accumulation in all tissues. Transcriptome analysis of MYB117-overexpressing poplars confirmed the upregulation of flavonoid and anthocyanin biosynthesis genes, as well as two flavonoid 3’,5’-hydroxylase (F3'5'H) genes. We also identified upregulated cytochrome b5 genes, required for full activity of F3'5'H. Phytochemical analysis demonstrated a corresponding increase in B-ring hydroxylation of anthocyanins, proanthocyanidins and flavonols in these transgenics. Similarly, overexpression of F3'5'H1 directly in hybrid poplar also resulted in increased B-ring hydroxylation, but without affecting overall flavonoid content. However, the overexpression of cytochrome b5 gene in F3'5'H1-overexpressing plants did not further increase B-ring hydroxylation. Our data indicate that MYB117 regulates the biosynthesis of anthocyanins in poplar, but also enhances B-ring hydroxylation by upregulating F3'5'H1.

2011 ◽  
Vol 12 (7) ◽  
pp. 643-656 ◽  
Author(s):  
Ederson Akio Kido ◽  
Pedranne Kelle de Araujo Barbosa ◽  
Jose Ribamar Costa Ferreira Neto ◽  
Valesca Pandolfi ◽  
Laureen Michelle Houllou-Kido ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 456-475
Author(s):  
Efat Zohra ◽  
Muhammad Ikram ◽  
Ahmad A. Omar ◽  
Mujahid Hussain ◽  
Seema Hassan Satti ◽  
...  

Abstract In the present era, due to the increasing incidence of environmental stresses worldwide, the developmental growth and production of agriculture crops may be restrained. Selenium nanoparticles (SeNPs) have precedence over other nanoparticles because of the significant role of selenium in activating the defense system of plants. In addition to beneficial microorganisms, the use of biogenic SeNPs is known as an environmentally friendly and ecologically biocompatible approach to enhance crop production by alleviating biotic and abiotic stresses. This review provides the latest development in the green synthesis of SeNPs by using the results of plant secondary metabolites in the biogenesis of nanoparticles of different shapes and sizes with unique morphologies. Unfortunately, green synthesized SeNPs failed to achieve significant attention in the agriculture sector. However, research studies were performed to explore the application potential of plant-based SeNPs in alleviating drought, salinity, heavy metal, heat stresses, and bacterial and fungal diseases in plants. This review also explains the mechanistic actions that the biogenic SeNPs acquire to alleviate biotic and abiotic stresses in plants. In this review article, the future research that needs to use plant-mediated SeNPs under the conditions of abiotic and biotic stresses are also highlighted.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Adesola J. Tola ◽  
Amal Jaballi ◽  
Hugo Germain ◽  
Tagnon D. Missihoun

Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 394 ◽  
Author(s):  
Enerand Mackon ◽  
Guibeline Charlie Jeazet Dongho Epse Mackon ◽  
Yafei Ma ◽  
Muhammad Haneef Kashif ◽  
Niyaz Ali ◽  
...  

Anthocyanins are antioxidants used as natural colorants and are beneficial to human health. Anthocyanins contribute to reactive oxygen species detoxification and sustain plant growth and development under different environmental stresses. They are phenolic compounds that are broadly distributed in nature and are responsible for a wide range of attractive coloration in many plant organs. Anthocyanins are found in various parts of plants such as flowers, leaves, stems, shoots, and grains. Considering their nutritional and health attributes, anthocyanin-enriched rice or pigmented rice cultivars are a possible alternative to reduce malnutrition around the globe. Anthocyanin biosynthesis and storage in rice are complex processes in which several structural and regulatory genes are involved. In recent years, significant progress has been achieved in the molecular and genetic mechanism of anthocyanins, and their synthesis is of great interest to researchers and the scientific community. However, limited studies have reported anthocyanin synthesis, transportation, and environmental conditions that can hinder anthocyanin production in rice. Rice is a staple food around the globe, and further research on anthocyanin in rice warrants more attention. In this review, metabolic and pre-biotic activities, the underlying transportation, and storage mechanisms of anthocyanins in rice are discussed in detail. This review provides potential information for the food industry and clues for rice breeding and genetic engineering of rice.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1073
Author(s):  
Meng-Bo Tian ◽  
Lin Yuan ◽  
Ming-Yuan Zheng ◽  
Zhu-Mei Xi

Anthocyanins are vital components of plant secondary metabolites, and are also the most important coloring substances in wine. Teinturier cultivars are rich in anthocyanins. However, the differences in anthocyanin accumulation and profiles between teinturier and non-teinturier cultivars have not been reported. In this study, Yan 73 and Dunkelfelder were selected as the experimental materials, and three non-teinturier cultivars were used for comparison. LC-MS and qRT-PCR were used to determine the individual anthocyanin contents and the relative gene expression. The results show that the total anthocyanin content of the teinturier cultivars was considerably higher than that in non-teinturier cultivars, and the levels of individual anthocyanins increased gradually during ripening. Lower ratios of modified anthocyanins were found in the teinturier cultivars, which was not only due to the high expression level of VvUFGT and VvGST4, but also due to the relatively low expression of VvOMT in these cultivars. Cluster analysis of gene expression and anthocyanin accumulation showed that VvUFGT is related to anthocyanin accumulation, and that AM1 is related to the synthesis and transport of methylated anthocyanins. Our results will be useful for further clarifying the pathways of anthocyanin synthesis, modification, and transport in teinturier cultivars.


2015 ◽  
Vol 59 (3) ◽  
pp. 334-342 ◽  
Author(s):  
Haitao Shi ◽  
Yongqiang Qian ◽  
Dun‐Xian Tan ◽  
Russel J. Reiter ◽  
Chaozu He

2018 ◽  
Vol 165 (2) ◽  
pp. 356-368 ◽  
Author(s):  
Sung D. Lim ◽  
Su-Hwa Kim ◽  
Simon Gilroy ◽  
John C. Cushman ◽  
Won-Gyu Choi

Sign in / Sign up

Export Citation Format

Share Document