scholarly journals How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems

2011 ◽  
Vol 62 (10) ◽  
pp. 3251-3261 ◽  
Author(s):  
A. N. E. Birch ◽  
G. S. Begg ◽  
G. R. Squire
Author(s):  
Mohamed Nasser Baco

Previous studies suggested that maize is set to become a cash crop while ensuring food security better than any other crop. However, climate change has become one of the key production constraints that are now hampering and threatening the sustainability of maize production systems. We conducted a study to better understand changes here defined as adaptations made by smallholder farmers to ensure food security and improve income through maize production in a climate change context. Our results show that maize farmers in northern Benin mainly rely on traditional seeds. Drought as abiotic stress is perceived by farmers in many agro-ecological zones as a disruptive factor for crop production, including maize. When drought is associated with pest damages, both the quantity (i.e. yield) and the quality (i.e. attributes) of products/harvests are negatively affected. The adverse effects of drought continue to reduce production in different agro-ecological zones of the country, because of the lack of widespread adoption of tolerant varieties. The study suggests actions towards the production of drought-tolerant maize seeds, a promotion of seed companies, the organization of actors and value chains. Apart from climate change, the promotion of value chains is also emerging as one of the important aspects to take into account to sustain maize production in Benin.


2021 ◽  
Vol 25 (05) ◽  
pp. 1085-1095
Author(s):  
Muhammad Usman

Here, we evaluate the COVID-19 associated challenges and opportunities surrounding the water, air, agriculture and energy sectors, the four major elements to sustain life on earth with strong implications on food security and the environment. During this pandemic, significant improvements in the quality of air and water resources have been noted. The tracking of SARS-CoV-2, the etiologic agent of COVID-19, in wastewater allowed wastewater-based epidemiology for this disease. However, the presence of SARS-CoV-2 in wastewater and the increased use of antimicrobials for personal hygiene and environmental disinfection can have serious consequences on the environment and public health. Air pollutants and greenhouse gases have been significantly reduced except for ozone that increased due to the decline in NOx. Tackling air pollution is important due to its role in spreading and worsening the COVID-19. Similarly, this pandemic has a strong impact on crop production systems, livestock industry, food supply chain and global food security. The zoonotic nature of this disease could change human interactions with wildlife and companion animals, but clear strategies are needed to safeguard both human health and biodiversity throughout the COVID-19 recovery. Owing to the advantages of renewable energy highlighted during COVID-19, suitable investments should be dedicated to cleaner and sustainable energy infrastructure in revival plans. © 2021 Friends Science Publishers


Author(s):  
Mohammad Hasan Chowdhury ◽  
Md. Fahim Sharker Eashat ◽  
Chinmoy Sarkar ◽  
Nafisa Habib Purba ◽  
Mohammad Asadul Habib ◽  
...  

In recent years, the trend of growing vegetables on green roofs has gained momentum as a way of promoting agricultural sustainability in Dhaka City. Rooftop gardens become an important part of urban agriculture's recent rejuvenation and offer alternative spaces for urban markets to grow vegetable products. Green roofs create spaces for vegetable crop production, thereby creating opportunities for agricultural incorporation into urban communities. At present, however, vegetable production activities on rooftops are limited due to multiple challenges that need to be addressed before widespread implementation takes place. Rooftop agriculture can improve various ecosystem services, enhance the biodiversity of urban areas and reduce food insecurity. Food production from green roofs will help support and sustain food for urban communities and provide a rare opportunity to grow food efficiently in typically unused spaces. As human populations become more urbanized and urban consumers become more interested in local food for their families, the use of alternative agricultural production systems, such as green roof technologies, will increase in importance. While cultivating food on buildings is a key component of making cities more sustainable and habitable, green roofs are not the total solution for providing cities with food security. They should be viewed more as a supplement to other sources of food production in urban areas.


2020 ◽  
Vol 162 (2) ◽  
pp. 175-192
Author(s):  
Emilie Stokeld ◽  
Simon A. Croft ◽  
Jonathan M. H. Green ◽  
Christopher D. West

Abstract The global food system is increasingly interconnected and under pressure to support growing demand. At the same time, crop production is facing new and uncertain impacts from climate change. To date, understanding how downstream supply chain actors, such as commodity traders, are exposed to climate change risks has been difficult due to a lack of high-resolution climate and trade data. However, the recent availability of supply chain data linking subnational production to downstream actors, and gridded projections of crop yield under climate change, allows us to assess individual commodity trader exposure to long-term climate change risk. We apply such an analysis to soy production in Brazil, the world’s largest soy exporter. Whilst uncertainty across crop models’ yield projections means it remains difficult to accurately predict how production across the region will be affected by climate change, we demonstrate that the risk exposure of trading actors differs substantially due to the heterogeneity in their sourcing. Our study offers a first attempt to analyze subnational climate risk to individual trading actors operating across an entire production landscape, leading to more precise risk exposure analysis. With sufficient subnational data, this method can be applied to any crop and country combination, and in the context of wider food security issues, it will be pertinent to apply these methods across other production systems and downstream actors in the food system.


2019 ◽  
Vol 103 (1) ◽  
pp. 6-8 ◽  
Author(s):  
Terry Roberts

Since its early rudimentary forms, phosphate fertilizer has developed in step with our understanding of successful food production systems. Recognized as essential to life, the responsible use P in agriculture remains key to food security.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1152
Author(s):  
Rebekah Waller ◽  
Murat Kacira ◽  
Esther Magadley ◽  
Meir Teitel ◽  
Ibrahim Yehia

Recognizing the growing interest in the application of organic photovoltaics (OPVs) with greenhouse crop production systems, in this study we used flexible, roll-to-roll printed, semi-transparent OPV arrays as a roof shade for a greenhouse hydroponic tomato production system during a spring and summer production season in the arid southwestern U.S. The wavelength-selective OPV arrays were installed in a contiguous area on a section of the greenhouse roof, decreasing the transmittance of all solar radiation wavelengths and photosynthetically active radiation (PAR) wavelengths (400–700 nm) to the OPV-shaded area by approximately 40% and 37%, respectively. Microclimate conditions and tomato crop growth and yield parameters were measured in both the OPV-shaded (‘OPV’) and non-OPV-shaded (‘Control’) sections of the greenhouse. The OPV shade stabilized the canopy temperature during midday periods with the highest solar radiation intensities, performing the function of a conventional shading method. Although delayed fruit development and ripening in the OPV section resulted in lower total yields compared to the Control section (24.6 kg m−2 and 27.7 kg m−2, respectively), after the fourth (of 10 total) harvests, the average weekly yield, fruit number, and fruit mass were not significantly different between the treatment (OPV-shaded) and control group. Light use efficiency (LUE), defined as the ratio of total fruit yield to accumulated PAR received by the plant canopy, was nearly twice as high as the Control section, with 21.4 g of fruit per mole of PAR for plants in the OPV-covered section compared to 10.1 g in the Control section. Overall, this study demonstrated that the use of semi-transparent OPVs as a seasonal shade element for greenhouse production in a high-light region is feasible. However, a higher transmission of PAR and greater OPV device efficiency and durability could make OPV shades more economically viable, providing a desirable solution for co-located greenhouse crop production and renewable energy generation in hot and high-light intensity regions.


Author(s):  
Daniel P. Roberts ◽  
Nicholas M. Short ◽  
James Sill ◽  
Dilip K. Lakshman ◽  
Xiaojia Hu ◽  
...  

AbstractThe agricultural community is confronted with dual challenges; increasing production of nutritionally dense food and decreasing the impacts of these crop production systems on the land, water, and climate. Control of plant pathogens will figure prominently in meeting these challenges as plant diseases cause significant yield and economic losses to crops responsible for feeding a large portion of the world population. New approaches and technologies to enhance sustainability of crop production systems and, importantly, plant disease control need to be developed and adopted. By leveraging advanced geoinformatic techniques, advances in computing and sensing infrastructure (e.g., cloud-based, big data-driven applications) will aid in the monitoring and management of pesticides and biologicals, such as cover crops and beneficial microbes, to reduce the impact of plant disease control and cropping systems on the environment. This includes geospatial tools being developed to aid the farmer in managing cropping system and disease management strategies that are more sustainable but increasingly complex. Geoinformatics and cloud-based, big data-driven applications are also being enlisted to speed up crop germplasm improvement; crop germplasm that has enhanced tolerance to pathogens and abiotic stress and is in tune with different cropping systems and environmental conditions is needed. Finally, advanced geoinformatic techniques and advances in computing infrastructure allow a more collaborative framework amongst scientists, policymakers, and the agricultural community to speed the development, transfer, and adoption of these sustainable technologies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Karandish ◽  
Hamideh Nouri ◽  
Marcela Brugnach

AbstractEnding hunger and ensuring food security are among targets of 2030’s SDGs. While food trade and the embedded (virtual) water (VW) may improve food availability and accessibility for more people all year round, the sustainability and efficiency of food and VW trade needs to be revisited. In this research, we assess the sustainability and efficiency of food and VW trades under two food security scenarios for Iran, a country suffering from an escalating water crisis. These scenarios are (1) Individual Crop Food Security (ICFS), which restricts calorie fulfillment from individual crops and (2) Crop Category Food Security (CCFS), which promotes “eating local” by suggesting food substitution within the crop category. To this end, we simulate the water footprint and VW trades of 27 major crops, within 8 crop categories, in 30 provinces of Iran (2005–2015). We investigate the impacts of these two scenarios on (a) provincial food security (FSp) and exports; (b) sustainable and efficient blue water consumption, and (c) blue VW export. We then test the correlation between agro-economic and socio-environmental indicators and provincial food security. Our results show that most provinces were threatened by unsustainable and inefficient blue water consumption for crop production, particularly in the summertime. This water mismanagement results in 14.41 and 8.45 billion m3 y−1 unsustainable and inefficient blue VW exports under ICFS. “Eating local” improves the FSp value by up to 210% which lessens the unsustainable and inefficient blue VW export from hotspots. As illustrated in the graphical abstract, the FSp value strongly correlates with different agro-economic and socio-environmental indicators, but in different ways. Our findings promote “eating local” besides improving agro-economic and socio-environmental conditions to take transformative steps toward eradicating food insecurity not only in Iran but also in other countries facing water limitations.


Food Security ◽  
2021 ◽  
Author(s):  
Alain Ndoli ◽  
Athanase Mukuralinda ◽  
Antonius G. T. Schut ◽  
Miyuki Iiyama ◽  
Jean Damascene Ndayambaje ◽  
...  

AbstractThe world is challenged to meet the food demand of a growing population, especially in developing countries. Given the ambitious plans to scale up agroforestry in Africa, an improved understanding of the effect of agroforestry practices on the already challenged food security of rural households is crucial. The present study was undertaken to assess how on-farm trees impacted food security in addition to other household income sources in Rwanda. In each of the six agroecologies of Rwanda, a stratified sampling procedure was used where two administrative cells (4th formal administrative level) were selected in which households were randomly selected for interviews. A survey including 399 farmers was conducted and farmers were grouped in three types of agroforestry practice (i) low practitioners (LAP) represented by the first tertile, (ii) medium practitioners (MAP) represented by the second tertile and (iii) high practitioners (HAP) represented by the third tertile of households in terms of tree number. Asset values, household income sources, crop production, farm size, crop yield, and food security (food energy needs) were quantified among the types of agroforestry practice. A larger proportion of HAP households had access to adequate quantity and diversity of food when compared with MAP and LAP households. Food security probability was higher for households with more resources, including land, trees and livestock, coinciding with an increased crop and livestock income. We found no difference in asset endowment among types of agroforestry practices, while farmers in agroecologies with smaller farms (0.42 ha to 0.66 ha) had more on-farm trees (212 to 358 trees per household) than farms in agroecologies with larger farms (0.96 ha to 1.23 ha) which had 49 to 129 trees per household, probably due to differences in biophysical conditions. A positive association between tree density and food security was found in two out of six agroecologies. The proportion of income that came from tree products was high (> 20%) for a small fraction of farmers (12%), with the more food insecure households relying more on income from tree products than households with better food security status. Thus, tree income can be percieved as a “safety net” for the poorest households.


Sign in / Sign up

Export Citation Format

Share Document