Spine

Author(s):  
Allan D. Levi

Spine cases form a significant component of the neurosurgery Oral Board Examinations. A familiarity with the common cases is essential in preparing for the boards. Spine includes cases that span from the skull base to the sacrum. Another component of spine includes an understanding of spine stability as well as the use of spinal instrumentation such as cervical plating and pedicle screws. These techniques are now a standard part of the neurosurgical armamentarium. Current new technologies or approaches to the spine whether minimally invasive techniques or surgery for deformity are actively used and will continue to form a larger part of the oral exam. The following cases are discussed in this chapter: bilateral cervical facet dislocation with spinal cord injury, central calcified thoracic disc herniation, L5 congenital spondylolysis with spondylolisthesis, metastatic lesion, and a thoracolumbar spine deformity.

Spine cases form a significant component of the neurosurgery Oral Board Examination. A familiarity with the common cases is essential in preparing for the boards. Spine includes cases that span from the skull base to the sacrum. Another component of spine includes an understanding of spine stability as well as the use of spinal instrumentation such as cervical plating and pedicle screws. These techniques are now a standard part of the neurosurgical armamentariun. Current new technologies or approaches to the spine, whether minimally invasive techniques or surgery for deformity, are actively used and will continue to form a larger part of the oral examination. The following cases are discussed in this chapter: bilateral cervical facet dislocation with spinal cord injury, central calcified thoracic disk herniation, L5 congenital spondylolysis with spondylolisthesis, metastatic lesion, and intramedullary ependymoma.


2009 ◽  
Vol 27 (3) ◽  
pp. E9 ◽  
Author(s):  
Jeffrey H. Oppenheimer ◽  
Igor DeCastro ◽  
Dennis E. McDonnell

The trend of using smaller operative corridors is seen in various surgical specialties. Neurosurgery has also recently embraced minimal access spine technique, and it has rapidly evolved over the past 2 decades. There has been a progression from needle access, small incisions with adaptation of the microscope, and automated percutaneous procedures to endoscopically and laparoscopically assisted procedures. More recently, new muscle-sparing technology has come into use with tubular access. This has now been adapted to the percutaneous placement of spinal instrumentation, including intervertebral spacers, rods, pedicle screws, facet screws, nucleus replacement devices, and artificial discs. New technologies involving hybrid procedures for the treatment of complex spine trauma are now on the horizon. Surgical corridors have been developed utilizing the interspinous space for X-STOP placement to treat lumbar stenosis in a minimally invasive fashion. The direct lateral retroperitoneal corridor has allowed for minimally invasive access to the anterior spine. In this report the authors present a chronological, historical perspective of minimal access spine technique and minimally invasive technologies in the lumbar, thoracic, and cervical spine from 1967 through 2009. Due to a low rate of complications, minimal soft tissue trauma, and reduced blood loss, more spine procedures are being performed in this manner. Spine surgery now entails shorter hospital stays and often is carried out on an outpatient basis. With education, training, and further research, more of our traditional open surgical management will be augmented or replaced by these technologies and approaches in the future.


2018 ◽  
Vol 1 (2) ◽  
pp. 2
Author(s):  
Chiung Chyi Shen

Use of pedicle screws is widespread in spinal surgery for degenerative, traumatic, and oncological diseases. The conventional technique is based on the recognition of anatomic landmarks, preparation and palpation of cortices of the pedicle under control of an intraoperative C-arm (iC-arm) fluoroscopy. With these conventional methods, the median pedicle screw accuracy ranges from 86.7% to 93.8%, even if perforation rates range from 21.1% to 39.8%.The development of novel intraoperative navigational techniques, commonly referred to as image-guided surgery (IGS), provide simultaneous and multiplanar views of spinal anatomy. IGS technology can increase the accuracy of spinal instrumentation procedures and improve patient safety. These systems, such as fluoroscopy-based image guidance ("virtual fluoroscopy") and computed tomography (CT)-based computer-guidance systems, have sensibly minimized risk of pedicle screw misplacement, with overall perforation rates ranging from between 14.3% and 9.3%, respectively."Virtual fluoroscopy" allows simultaneous two-dimensional (2D) guidance in multiple planes, but does not provide any axial images; quality of images is directly dependent on the resolution of the acquired fluoroscopic projections. Furthermore, computer-assisted surgical navigation systems decrease the reliance on intraoperative imaging, thus reducing the use of intraprocedure ionizing radiation. The major limitation of this technique is related to the variation of the position of the patient from the preoperative CT scan, usually obtained before surgery in a supine position, and the operative position (prone). The next technological evolution is the use of an intraoperative CT (iCT) scan, which would allow us to solve the position-dependent changes, granting a higher accuracy in the navigation system. 


2021 ◽  
Vol 20 (4) ◽  
pp. E292-E292
Author(s):  
Travis Hamilton ◽  
Mohamed Macki ◽  
Thomas M Zervos ◽  
Victor Chang

Abstract As the popularity of minimally invasive surgery (MIS) continues to grow, novel techniques are needed to meet the demands of multisegment fixation for advanced spinal diseases. In one such example, iliac bolts are often required to anchor large fusion constructs, but MIS technical notes are missing from the literature.  A 67-yr-old female presented with a symptomatic coronal deformity: preoperative pelvic incidence = 47°, pelvic tilt = 19°, and lumbar lordosis = 29°, sagittal vertical axis = +5.4 cm with 30° of scoliosis. The operative plan included T10-ilium fusion with transforaminal interbody grafts at L2-3, L3-4, L4-5, and L5-S1. The intraoperative video is of minimally invasive placement of iliac bolts using the O-Arm Surgical Imaging System (Medtronic®). The patient consented to the procedure.  A mini-open exposure that remains above the fascial planes allows for multilevel instrumentation with appropriate decompression at the interbody segments. After the placement of the pedicle screws under image-guidance, the direction is turned to the minimally invasive iliac bolts. Following the trajectory described in the standard open approach,1 the posterior superior iliac spine (PSIS) is identified with the navigation probe, which will guide the Bovie cautery through the fascia. This opening assists in the trajectory of the navigated-awl tap toward the anterior superior iliac spine (ASIS). Next, 8.5 mm x 90 mm iliac screws were placed in the cannulated bone under navigation. After intraoperative image confirmation of screw placement, the contoured rods are threaded under the fascia. The setscrews lock the rod in position. MIS approaches obviate cross-linking the rods, rendering pelvic fixation more facile.  This technique allows for minimal dissection of the posterior pelvic soft tissue while maintaining adequate fixation.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Christine L. Farnsworth ◽  
Peter O. Newton ◽  
Eric Breisch ◽  
Michael T. Rohmiller ◽  
Jung Ryul Kim ◽  
...  

Study Design. Combinations of metal implants (stainless steel (SS), titanium (Ti), and cobalt chrome (CC)) were placed in porcine spines. After 12 months, tissue response and implant corrosion were compared between mixed and single metal junctions. Objective. Model development and an attempt to determine any detriment of combining different metals in posterior spinal instrumentation. Methods. Yucatan mini-pigs underwent instrumentation over five unfused lumbar levels. A SS rod and a Ti rod were secured with Ti and SS pedicle screws, SS and Ti crosslinks, SS and CC sublaminar wires, and Ti sublaminar cable. The resulting 4 SS/SS, 3 Ti/Ti, and 11 connections between dissimilar metals per animal were studied after 12 months using radiographs, gross observation, and histology (foreign body reaction (FBR), metal particle count, and inflammation analyzed). Results. Two animals had constructs in place for 12 months with no complications. Histology of tissue over SS/SS connections demonstrated 11.1 ± 7.6 FBR cells, 2.1 ± 1.7 metal particles, and moderate to extensive inflammation. Ti/Ti tissue showed 6.3 ± 3.8 FBR cells, 5.2 ± 6.7 particles, and no to extensive inflammation (83% extensive). Tissue over mixed components had 14.1 ± 12.6 FBR cells and 13.4 ± 27.8 particles. Samples surrounding wires/cables versus other combinations demonstrated FBR (12.4 ± 13.5 versus 12.0 ± 9.6 cells, P = 0.96), particles (19.8 ± 32.6 versus 4.3 ± 12.7, P = 0.24), and inflammation (50% versus 75% extensive, P = 0.12). Conclusions. A nonfusion model was developed to study corrosion and analyze biological responses. Although no statistical differences were found in overlying tissue response to single versus mixed metal combinations, galvanic corrosion between differing metals is not ruled out. This pilot study supports further investigation to answer concerns when mixing metals in spinal constructs.


2020 ◽  
Vol 32 (6) ◽  
pp. 891-899 ◽  
Author(s):  
Jonathan J. Rasouli ◽  
Brooke T. Kennamer ◽  
Frank M. Moore ◽  
Alfred Steinberger ◽  
Kevin C. Yao ◽  
...  

OBJECTIVEThe C7 vertebral body is morphometrically unique; it represents the transition from the subaxial cervical spine to the upper thoracic spine. It has larger pedicles but relatively small lateral masses compared to other levels of the subaxial cervical spine. Although the biomechanical properties of C7 pedicle screws are superior to those of lateral mass screws, they are rarely placed due to increased risk of neurological injury. Although pedicle screw stimulation has been shown to be safe and effective in determining satisfactory screw placement in the thoracolumbar spine, there are few studies determining its utility in the cervical spine. Thus, the purpose of this study was to determine the feasibility, clinical reliability, and threshold characteristics of intraoperative evoked electromyographic (EMG) stimulation in determining satisfactory pedicle screw placement at C7.METHODSThe authors retrospectively reviewed a prospectively collected data set. All adult patients who underwent posterior cervical decompression and fusion with placement of C7 pedicle screws at the authors’ institution between January 2015 and March 2019 were identified. Demographic, clinical, neurophysiological, operative, and radiographic data were gathered. All patients underwent postoperative CT scanning, and the position of C7 pedicle screws was compared to intraoperative neurophysiological data.RESULTSFifty-one consecutive C7 pedicle screws were stimulated and recorded intraoperatively in 25 consecutive patients. Based on EMG findings, 1 patient underwent intraoperative repositioning of a C7 pedicle screw, and 1 underwent removal of a C7 pedicle screw. CT scans demonstrated ideal placement of the C7 pedicle screw in 40 of 43 instances in which EMG stimulation thresholds were > 15 mA. In the remaining 3 cases the trajectories were suboptimal but safe. When the screw stimulation thresholds were between 11 and 15 mA, 5 of 6 screws were suboptimal but safe, and in 1 instance was potentially dangerous. In instances in which the screw stimulated at thresholds ≤ 10 mA, all trajectories were potentially dangerous with neural compression.CONCLUSIONSIdeal C7 pedicle screw position strongly correlated with EMG stimulation thresholds > 15 mA. In instances, in which the screw stimulates at values between 11 and 15 mA, screw trajectory exploration is recommended. Screws with thresholds ≤ 10 mA should always be explored, and possibly repositioned or removed. In conjunction with other techniques, EMG threshold testing is a useful and safe modality in determining appropriate C7 pedicle screw placement.


2014 ◽  
Vol 36 (3) ◽  
pp. E5 ◽  
Author(s):  
Kern H. Guppy ◽  
Indro Chakrabarti ◽  
Amit Banerjee

Imaging guidance using intraoperative CT (O-arm surgical imaging system) combined with a navigation system has been shown to increase accuracy in the placement of spinal instrumentation. The authors describe 4 complex upper cervical spine cases in which the O-arm combined with the StealthStation surgical navigation system was used to accurately place occipital screws, C-1 screws anteriorly and posteriorly, C-2 lateral mass screws, and pedicle screws in C-6. This combination was also used to navigate through complex bony anatomy altered by tumor growth and bony overgrowth. The 4 cases presented are: 1) a developmental deformity case in which the C-1 lateral mass was in the center of the cervical canal causing cord compression; 2) a case of odontoid compression of the spinal cord requiring an odontoidectomy in a patient with cerebral palsy; 3) a case of an en bloc resection of a C2–3 chordoma with instrumentation from the occiput to C-6 and placement of C-1 lateral mass screws anteriorly and posteriorly; and 4) a case of repeat surgery for a non-union at C1–2 with distortion of the anatomy and overgrowth of the bony structure at C-2.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Hang Liao ◽  
Houguang Miao ◽  
Peng Xie ◽  
Yueyue Wang ◽  
Ningdao Li ◽  
...  

2017 ◽  
Vol 1 (1) ◽  
pp. 2514183X1771831 ◽  
Author(s):  
Andreas Raabe ◽  
Jens Fichtner ◽  
Jan Gralla

There are several unique features of the concept of advanced intraoperative imaging modalities with CT (computed tomography), MRI (magnet resonance imaging) and DSA (digital substraction angiography) inaugurated in one operating tract. For the first time, there is the opportunity to switch from postoperative to intraoperative imaging – when the surgeon can not only check the result of surgery but improve it – but in general, that is, for all specialties, at least theoretically. Intraoperative imaging is a broad term with many technologies already in routine use today, such as image intensifier, ultrasound, fluorescence technologies, and soon. Using intra-operative CT, MRI, and DSA is not indisputable. Does the benefit justify such immense costs, both in building and in maintenance? To evaluate the clinical benefit and possible drawbacks of these technologies and if there's a substantial benefit for the patients. Also, this is a review of literature to evaluate the evidence and clinical impact of advanced intraoperative imaging in neurosurgery. There is one prospective randomized trial showing that intraoperative MRI increases the extent of resection. In spine surgery, there are several randomized trials showing that pedicle screws are inserted more accurately when image guidance is used. However, there is no RCT comparing navigation with intraoperative CT-updated navigation. Several prospective studies are showing that intraoperative DSA is able to identify vascular remnants or vessel occlusions in case of aneurysm-, arteriovenous malformation-and arteriovenous fistula-surgery. A fair comparison of the benefit of these new technologies must take into consideration that other methods of intraoperative imaging or image guidance already exist. Hence, there are some patients in whom the use of the more advanced technologies makes a personal, individual difference that may affect quality of life and survival. We have to differentiate between (1) the best diagnostic procedure and (2) the term “standard of care.” Advanced intraoperative imaging is a gold standard in terms of imaging but not a standard of care.


Sign in / Sign up

Export Citation Format

Share Document