A look at vision, and a touch more

2021 ◽  
pp. 141-220
Author(s):  
Michael A. Arbib

Le Corbusier’s distinction between engineering and architectural aesthetics introduces the challenges of balancing the practical and the aesthetic, and introduces his dictum, “A house is a machine for living in.” Here, beauty is just one aspect of the emotional impact of a building. Early visual processing in the frog is action-oriented, while in the primate it is general-purpose. These support different approaches to aesthetic judgment of visual form and suggest deep evolutionary underpinnings of aesthetic judgment. Neuroscientists distinguish working memory, episodic memory, procedural memory, and semantic memory. The VISIONS model exemplifies some of these, as well as principles of brain operation, including competition and cooperation of schema instances in constructing an interpretation of a visual scene. What people attend to is influenced by task and motivation. After assessing how a blind artist developed the ability to paint pictures, the chapter outlines MULTIMODES, a cognitive model that extends the principles of VISIONS to multimodal action-oriented perception of episodes.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xueru Zhao ◽  
Junjing Wang ◽  
Jinhui Li ◽  
Guang Luo ◽  
Ting Li ◽  
...  

AbstractMost previous neuroaesthetics research has been limited to considering the aesthetic judgment of static stimuli, with few studies examining the aesthetic judgment of dynamic stimuli. The present study explored the neural mechanisms underlying aesthetic judgment of dynamic landscapes, and compared the neural mechanisms between the aesthetic judgments of dynamic landscapes and static ones. Participants were scanned while they performed aesthetic judgments on dynamic landscapes and matched static ones. The results revealed regions of occipital lobe, frontal lobe, supplementary motor area, cingulate cortex and insula were commonly activated both in the aesthetic judgments of dynamic and static landscapes. Furthermore, compared to static landscapes, stronger activations of middle temporal gyrus (MT/V5), and hippocampus were found in the aesthetic judgments of dynamic landscapes. This study provided neural evidence that visual processing related regions, emotion-related regions were more active when viewing dynamic landscapes than static ones, which also indicated that dynamic stimuli were more beautiful than static ones.


2020 ◽  
Vol 63 (12) ◽  
pp. 4162-4178
Author(s):  
Emily Jackson ◽  
Suze Leitão ◽  
Mary Claessen ◽  
Mark Boyes

Purpose Previous research into the working, declarative, and procedural memory systems in children with developmental language disorder (DLD) has yielded inconsistent results. The purpose of this research was to profile these memory systems in children with DLD and their typically developing peers. Method One hundred four 5- to 8-year-old children participated in the study. Fifty had DLD, and 54 were typically developing. Aspects of the working memory system (verbal short-term memory, verbal working memory, and visual–spatial short-term memory) were assessed using a nonword repetition test and subtests from the Working Memory Test Battery for Children. Verbal and visual–spatial declarative memory were measured using the Children's Memory Scale, and an audiovisual serial reaction time task was used to evaluate procedural memory. Results The children with DLD demonstrated significant impairments in verbal short-term and working memory, visual–spatial short-term memory, verbal declarative memory, and procedural memory. However, verbal declarative memory and procedural memory were no longer impaired after controlling for working memory and nonverbal IQ. Declarative memory for visual–spatial information was unimpaired. Conclusions These findings indicate that children with DLD have deficits in the working memory system. While verbal declarative memory and procedural memory also appear to be impaired, these deficits could largely be accounted for by working memory skills. The results have implications for our understanding of the cognitive processes underlying language impairment in the DLD population; however, further investigation of the relationships between the memory systems is required using tasks that measure learning over long-term intervals. Supplemental Material https://doi.org/10.23641/asha.13250180


1998 ◽  
Vol 353 (1377) ◽  
pp. 1819-1828 ◽  
Author(s):  
◽  
S. M. Courtney ◽  
L. Petit ◽  
J. V. Haxby ◽  
L. G. Ungerleider

Working memory enables us to hold in our ‘mind's eye’ the contents of our conscious awareness, even in the absence of sensory input, by maintaining an active representation of information for a brief period of time. In this review we consider the functional organization of the prefrontal cortex and its role in this cognitive process. First, we present evidence from brain–imaging studies that prefrontal cortex shows sustained activity during the delay period of visual working memory tasks, indicating that this cortex maintains on–line representations of stimuli after they are removed from view. We then present evidence for domain specificity within frontal cortex based on the type of information, with object working memory mediated by more ventral frontal regions and spatial working memory mediated by more dorsal frontal regions. We also propose that a second dimension for domain specificity within prefrontal cortex might exist for object working memory on the basis of the type of representation, with analytic representations maintained preferentially in the left hemisphere and image–based representations maintained preferentially in the right hemisphere. Furthermore, we discuss the possibility that there are prefrontal areas brought into play during the monitoring and manipulation of information in working memory in addition to those engaged during the maintenance of this information. Finally, we consider the relationship of prefrontal areas important for working memory, both to posterior visual processing areas and to prefrontal areas associated with long–term memory.


1996 ◽  
Vol 351 (1346) ◽  
pp. 1397-1404 ◽  

A major problem in analysing the executive processes that seem to depend upon the prefrontal cortex stems from the absence of a well developed cognitive model of such processes. It is suggested that the central executive component of an earlier model of working memory might provide a suitable framework for such an analysis. The approach is illustrated using one proposed component of executive control, namely the capacity to combine two concurrent tasks. The application of the approach to patients suffering from Alzheimer’s disease, and patients with acquired brain damage is discussed. Finally, a study is described in which the dual task performance of patients with known frontal lesions is shown to be associated with observed behavioural problems. The paper concludes with the discussion of the prospects for extending the approach to include a range of other executive processes, and to the way in which such an analysis may subsequently lead to a more integrated model of the central executive, and a better understanding of its relationship to the prefrontal cortex.


Author(s):  
Angie M. Michaiel ◽  
Elliott T.T. Abe ◽  
Cristopher M. Niell

ABSTRACTMany studies of visual processing are conducted in unnatural conditions, such as head- and gaze-fixation. As this radically limits natural exploration of the visual environment, there is much less known about how animals actively use their sensory systems to acquire visual information in natural, goal-directed contexts. Recently, prey capture has emerged as an ethologically relevant behavior that mice perform without training, and that engages vision for accurate orienting and pursuit. However, it is unclear how mice target their gaze during such natural behaviors, particularly since, in contrast to many predatory species, mice have a narrow binocular field and lack foveate vision that would entail fixing their gaze on a specific point in the visual field. Here we measured head and bilateral eye movements in freely moving mice performing prey capture. We find that the majority of eye movements are compensatory for head movements, thereby acting to stabilize the visual scene. During head turns, however, these periods of stabilization are interspersed with non-compensatory saccades that abruptly shift gaze position. Analysis of eye movements relative to the cricket position shows that the saccades do not preferentially select a specific point in the visual scene. Rather, orienting movements are driven by the head, with the eyes following in coordination to sequentially stabilize and recenter the gaze. These findings help relate eye movements in the mouse to other species, and provide a foundation for studying active vision during ethological behaviors in the mouse.


2021 ◽  
Author(s):  
◽  
Wei Dai

<p>The present research comprises four experiments designed to explore the role of visual and phonological working memory resources in carry operations or intermediate solutions in complex mental addition and multiplication. A special consideration was given to the effect of arithmetic operation on the relative involvement of visual and phonological resources in complex addition and multiplication.  A pilot study was conducted prior to the experiments, aiming to examine the suitability of visual and phonological stimuli for change detection and working memory capacity estimation. Two staff of Victoria University of Wellington with normal or corrected vision attended the pilot study as participants. Pilot Experiments 1 to 4 tested the suitability for probing visual working memory (VWM) capacity of two types of visual stimulus with different feature dimensions: bars of different orientations and Gabor patches with different orientations and spatial frequencies. A single-probe change-detection experimental paradigm was used, with participants making decisions about whether or not probe items were the same as memory items presented previously. Both presentation durations and set sizes were manipulated. Stable estimates of visual working memory capacities were found when Gabor patches with varied spatial frequencies were used, suggesting its utility as a probe for estimating visual working memory capacity. Pilot Experiment 5 was designed to examine the suitability of pronounceable consonant-vowel-consonant non-words as a probe of phonological working memory (PWM). Valid estimates of PWM capacity were found for both participants, suggesting the suitability of phonological non-words as phonological stimuli of assessing PWM capacities and interfering with information phonologically-represented and maintained in working memory.  Experiments 1 to 4 investigated the relative involvement of visual and phonological working memory resources in carry operations or intermediate solutions in mental addition and multiplication. Fifty-six undergraduate students of Victoria University of Wellington participated all experiments, and 48 of them provided valid data for final analysis. A dual-task interference paradigm was used in all experiments, with arithmetic tasks and visual/phonological change-detection tasks either performed alone, or simultaneously. For arithmetic tasks, double-digit addition problems and multiplication problems comprising one single-digit and one double-digit were presented horizontally and continuously, and participants reported the final solutions verbally. For visual change-detection tasks, study items were visually presented to participants for 1,000ms before they disappeared. After a 4000ms retention interval, a probe item was presented and participants judged whether the probe item was the same as one of the memory items. For phonological change-detection tasks, phonological nonwords were verbally presented to participants sequentially. After a 4000ms retention interval, a probe nonword was presented to participants, and they indicated whether or not the probe was the same as one of the study non-words. Both numbers of carry operations involved in the arithmetic problems (zero, one, and two) and levels of visual/phonological loads (low, medium, and high) were manipulated in all experiments.   For all experiments, the effect of the number of carry operations on calculation performance was observed: arithmetic problems involving more carry operations were solved less rapidly and accurately. This effect was enlarged by concurrent visual and phonological loads, evidenced by significant interactions between task conditions and number of carry operations observed in the accuracy analyses of the arithmetic tasks in all experiments except Experiment 2, in which multiplication problems were solved under visual loads. These findings suggest that both visual and phonological resources are required for the temporary storage of intermediate solutions or carry information in mental addition, while for mental multiplication, only evidence for a role of phonological representations in carry operations was found.  For all experiments, the greater performance impairment of carry problems than no-carry problems associated with the presence of working memory loads was not further increased by increasing load level: There were no significant three-way interactions between task conditions, number of carry operations and load levels in accuracy analyses of arithmetic tasks. One possible explanation for this absence of significant three-way interactions might be attributable to some participants switching between phonological and visual working memory for the temporary storage of carrier information or intermediate solutions as a result of decreasing amount of available phonological or visual working memory resources.  In conclusion, the findings of the present research provide support for a role of both visual and phonological working memory resources in carry operations in mental addition, and a role of phonological working memory resources in carry operation in mental multiplication. Thus, it can be concluded that solving mental arithmetic problems involving carry-operations requires working memory resources. However, these results contradict the prediction of the Triple Code Model, which assumes addition mainly relies on visual processing, and multiplication mainly relies on verbal processing, while complex mental arithmetic is solved with the aid of visual processing regardless of the arithmetic operation. Thus, these results challenge the operation-specific involvement of working memory resources in complex mental arithmetic. However, it should be noted that the same arithmetic problems were solved three times by the same participants, which might have encouraged more activation in phonological processing than visual processing due to the practice effect.</p>


2018 ◽  
Vol 12 (3) ◽  
pp. 289-302
Author(s):  
Nancy Weiss Hanrahan

If, as Susan Buck-Morss (2003) suggests, aesthetic experience is an occasion for “making critical judgments about not only cultural forms but social forms of our being-in-the-world,” or if it is linked, in David Hesmondhalgh’s (2013) account, to the possibilities of collective flourishing, potential changes in the nature of that experience merit critical attention. This article reflects on the ways in which these social or ethical dimensions of the aesthetic experience of music are affected by digitization. It moves from a discussion of aesthetic experience as a form of encounter that refers to a common world, to consideration of recent work in music sociology that engages themes that emerge from that discussion: aesthetic judgment, and the question of difference and commonality. With illustrations from focus group interviews, I suggest that the quantization associated with digital environments is altering the cultural form of aesthetic judgment, just as personalization is changing the meaning of “difference” in this context. The essay is intended as a disclosive critique that takes as its primary object not the world observable through thick description or hermeneutic interpretation of actual cultural practice, but a world evoked through critical reflection on its actual and potential constellations of meaning.


Author(s):  
A. W. Eaton

This chapter summarizes central issues and themes in feminist philosophical aesthetics in the analytic tradition, although some continental figures are discussed. After introducing the interdisciplinary, intersectional and trans* inclusive approach that feminist aesthetics is starting to take, this essay discusses situatedness, artistic canon formation, humanism vs. gynocentrism, rewriting the philosophical canon, overcoming artworld biases, and the role of the aesthetic in systemic oppression. Specific topics to be discussed include the male gaze, the female nude, the concept of artistic genius, women’s artistic production, the purported universality of correct aesthetic judgment, the sex/gender distinction as it pertains to aesthetics and the arts, and body aesthetics.


Sign in / Sign up

Export Citation Format

Share Document