What is advocacy?

2019 ◽  
pp. 3-20
Author(s):  
Wolfgang Grisold ◽  
Walter Struhal ◽  
Thomas Grisold

Neurology is concerned with diseases of the brain, spinal cord, and neuromuscular system. Neurological diseases can be acute or chronic, and residual or progressive disease often leaves patients with handicaps and disability. Besides many frequent neurological diseases as stroke, epilepsy, movement disorders and others, neurology also includes rare and orphan diseases. In addition to science, treatment, and care, patients and carers often need support at various levels and for distinct problems ranging from individual to global issues, which will be defined as the micro-, meso-, and macro levels. Advocacy, originally defined as ‘giving a voice’ to patients and creating awareness, becomes an essential component of neurological practice. The term advocacy is used in medical, social, and several other contexts. Advocacy usually requires an advocate, client, or object, and usually another party or position is present. In the medical context, advocacy is often fuelled by altruistic elements. Advocacy in neurology can be achieved by different methods and at different levels. This chapter provides an introduction to the edited volume on ‘Advocacy in Neurology’ and gives an outlook on what the reader can gain from this book by summarizing recurrent themes and highlighting different approaches in individual chapters.

Author(s):  
Mark J. Edwards ◽  
Penelope Talelli

For video material relating to movement disorders, please go to Movement Disorders Videos. Less is known of the function of the cerebellum, thalamus and basal ganglia than of other structures in the brain, but there is an increasing appreciation of their complex role in motor and nonmotor functions of the entire nervous system. These structures exercise functions that far exceed their previously assumed supporting parts as simple ‘relay stations’ between cortex and spinal cord....


1907 ◽  
Vol 27 ◽  
pp. 281-301 ◽  
Author(s):  
Sutherland Simpson ◽  
W. A. Jolly

The object of the present research was to follow, by the degeneration method, the course of the fibres proceeding from definite and limited areas of the motor cortex, and to determine to what extent there is a grouping or localisation of the fibres of the pyramidal tract at different levels in the brain and spinal cord.


Author(s):  
Erlick A. C. Pereira ◽  
Jonathan A. Hyam ◽  
Alexander L. Green

Neurosurgery encompasses brain, spine, and peripheral nerve disorders that may benefit from operative management. These include congenital neurological diseases, epilepsy, stroke, neurological infection, movement disorders, spinal cord disease, neurological tumours, and pituitary disorders. This chapter focuses on head injury and subarachnoid haemorrhage, two common neurosurgical disorders not detailed elsewhere in this book.


2018 ◽  
Vol 23 (1) ◽  
pp. 10-13
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Injuries that affect the central nervous system (CNS) can be catastrophic because they involve the brain or spinal cord, and determining the underlying clinical cause of impairment is essential in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), in part because the AMA Guides addresses neurological impairment in several chapters. Unlike the musculoskeletal chapters, Chapter 13, The Central and Peripheral Nervous System, does not use grades, grade modifiers, and a net adjustment formula; rather the chapter uses an approach that is similar to that in prior editions of the AMA Guides. The following steps can be used to perform a CNS rating: 1) evaluate all four major categories of cerebral impairment, and choose the one that is most severe; 2) rate the single most severe cerebral impairment of the four major categories; 3) rate all other impairments that are due to neurogenic problems; and 4) combine the rating of the single most severe category of cerebral impairment with the ratings of all other impairments. Because some neurological dysfunctions are rated elsewhere in the AMA Guides, Sixth Edition, the evaluator may consult Table 13-1 to verify the appropriate chapter to use.


2002 ◽  
Vol 46 (8) ◽  
pp. 2420-2426 ◽  
Author(s):  
Karl V. Clemons ◽  
Raymond A. Sobel ◽  
Paul L. Williams ◽  
Demosthenes Pappagianis ◽  
David A. Stevens

ABSTRACT The efficacy of intravenously administered liposomal amphotericin B (AmBisome [AmBi]) for the treatment of experimental coccidioidal meningitis was compared with those of oral fluconazole (FLC) and intravenously administered conventional amphotericin B (AMB). Male New Zealand White rabbits were infected by intracisternal inoculation of arthroconidia of Coccidioides immitis. Starting 5 days postinfection, animals received one of the following: 5% dextrose water diluent; AMB given at 1 mg/kg of body weight; AmBi given at 7.5, 15, or 22.5 mg/kg intravenously three times per week for 3 weeks; or oral FLC given at 80 mg/kg for 19 days. One week after the cessation of therapy, all survivors were euthanatized, the numbers of CFU remaining in the spinal cord and brain were determined, and histological analyses were performed. All AmBi-, FLC-, or AMB-treated animals survived and had prolonged lengths of survival compared with those for the controls (P < 0.0001). Treated groups had significantly lower numbers of white blood cells and significantly lower protein concentrations in the cerebrospinal fluid compared with those for the controls (P < 0.01 to 0.0005) and had fewer clinical signs of infection (e.g., weight loss, elevated temperature, and neurological abnormalities including motor abnormalities). The mean histological scores for AmBi-treated rabbits were lower than those for FLC-treated and control rabbits (P < 0.016 and 0.0005, respectively); the scores for AMB-treated animals were lower than those for the controls (P < 0.0005) but were similar to those for FLC-treated rabbits. All regimens reduced the numbers of CFU in the brain and spinal cord compared with those for the controls (P ≤0.0005). AmBi-treated animals had 3- to 11-fold lower numbers of CFU than FLC-treated rabbits and 6- to 35-fold lower numbers of CFU than AmB-treated rabbits. Three of eight animals given 15 mg of AmBi per kg had no detectable infection in either tissue, whereas other doses of AmBi or FLC cleared either the brain or the spinal cord of infection in fewer rabbits. In addition, clearance of the infection from both tissues was achieved in none of the rabbits, and neither tissue was cleared of infection in AMB-treated animals. Overall, these data indicate that intravenously administered AmBi is superior to oral FLC or intravenous AMB and that FLC is better than AMB against experimental coccidioidal meningitis. These data indicate that AmBi may offer an improvement in the treatment of coccidioidal meningitis. Additional studies are warranted.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Ganchimeg Davaa ◽  
Jin Young Hong ◽  
Tae Uk Kim ◽  
Seong Jae Lee ◽  
Seo Young Kim ◽  
...  

Exercise training is a traditional method to maximize remaining function in patients with spinal cord injury (SCI), but the exact mechanism by which exercise promotes recovery after SCI has not been identified; whether exercise truly has a beneficial effect on SCI also remains unclear. Previously, we showed that epigenetic changes in the brain motor cortex occur after SCI and that a treatment leading to epigenetic modulation effectively promotes functional recovery after SCI. We aimed to determine how exercise induces functional improvement in rats subjected to SCI and whether epigenetic changes are engaged in the effects of exercise. A spinal cord contusion model was established in rats, which were then subjected to treadmill exercise for 12 weeks. We found that the size of the lesion cavity and the number of macrophages were decreased more in the exercise group than in the control group after 12 weeks of injury. Immunofluorescence and DNA dot blot analysis revealed that levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the brain motor cortex were increased after exercise. Accordingly, the expression of ten-eleven translocation (Tet) family members (Tet1, Tet2, and Tet3) in the brain motor cortex also elevated. However, no macrophage polarization was induced by exercise. Locomotor function, including Basso, Beattie, and Bresnahan (BBB) and ladder scores, also improved in the exercise group compared to the control group. We concluded that treadmill exercise facilitates functional recovery in rats with SCI, and mechanistically epigenetic changes in the brain motor cortex may contribute to exercise-induced improvements.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joddat Fatima ◽  
Muhammad Usman Akram ◽  
Amina Jameel ◽  
Adeel Muzaffar Syed

AbstractIn human anatomy, the central nervous system (CNS) acts as a significant processing hub. CNS is clinically divided into two major parts: the brain and the spinal cord. The spinal cord assists the overall communication network of the human anatomy through the brain. The mobility of body and the structure of the whole skeleton is also balanced with the help of the spinal bone, along with reflex control. According to the Global Burden of Disease 2010, worldwide, back pain issues are the leading cause of disability. The clinical specialists in the field estimate almost 80% of the population with experience of back issues. The segmentation of the vertebrae is considered a difficult procedure through imaging. The problem has been catered by different researchers using diverse hand-crafted features like Harris corner, template matching, active shape models, and Hough transform. Existing methods do not handle the illumination changes and shape-based variations. The low-contrast and unclear view of the vertebrae also makes it difficult to get good results. In recent times, convolutional nnural Network (CNN) has taken the research to the next level, producing high-accuracy results. Different architectures of CNN such as UNet, FCN, and ResNet have been used for segmentation and deformity analysis. The aim of this review article is to give a comprehensive overview of how different authors in different times have addressed these issues and proposed different mythologies for the localization and analysis of curvature deformity of the vertebrae in the spinal cord.


Sign in / Sign up

Export Citation Format

Share Document