scholarly journals Omega Centauri: weak MgH band in red giants directly traces the helium content

2020 ◽  
Vol 495 (1) ◽  
pp. 383-401
Author(s):  
Arumalla B S Reddy

ABSTRACT High spectral resolution and high signal-to-noise ratio optical spectra of red giants in the globular cluster Omega Centauri are analysed for stellar parameters and chemical abundances of 15 elements including helium by either line equivalent widths or synthetic spectrum analyses. The simultaneous abundance analysis of MgH and Mg lines adopting theoretical photospheres and a combination of He/H ratios proved to be the only powerful probe to evaluate helium abundances of red giants cooler than 4400 K, wherein otherwise helium line transitions (He i 10830 and 5876 Å) present for a direct spectral line analysis. The impact of helium-enhanced model photospheres on the resulting abundance ratios is smaller than 0.15 dex, in agreement with past studies. The first indirect spectroscopic helium abundances measured in this paper for the most metal-rich cluster members reveal the discovery of seven He-enhanced giants ($\Delta Y=+0.15 \pm 0.04$), the largest such sample found spectroscopically to date. The average metallicity of −0.79 ± 0.06 dex and abundances for O, Na, Al, Si, Ca, Ti, Ni, Ba, and La are consistent with values found for the red giant branch (RGB-a) and subgiant branch (SGB-a) populations of Omega Centauri, suggesting an evolutionary connection among samples. The He enhancement in giants is associated with larger s-process elemental abundances, which correlate with Al and anticorrelate with O. These results support the formation of He-enhanced, metal-rich population of Omega Centauri out of the interstellar medium enriched with the ejecta of fast rotating massive stars, binaries exploding as supernovae, and asymptotic giant branch (AGB) stars.

2018 ◽  
Vol 620 ◽  
pp. A76 ◽  
Author(s):  
B. Anguiano ◽  
S. R. Majewski ◽  
C. Allende-Prieto ◽  
S. Meszaros ◽  
H. Jönsson ◽  
...  

Context. In the era of massive spectroscopy surveys, automated stellar parameter pipelines and their validation are extremely important for an efficient scientific exploitation of the spectra. Aims. We undertake a critical and comprehensive comparison of the radial velocities and the main stellar atmosphere parameters for stars in common between the latest data releases from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE) and the Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) surveys. Methods. APOGEE is a high-resolution (R = 22 500) spectroscopic survey with high signal-to-noise ratio that is part of the Sloan Digital Sky Survey (SDSS). The latest data release, SDSS DR14, comprises APOGEE spectra for 263 444 stars, together with main stellar parameters and individual abundances for up to 20 chemical species. LAMOST is a low-resolution (R = 1800) optical spectroscopic survey also in the Northern Hemisphere, where 4000 fibers can be allocated simultaneously. LAMOST DR3 contains 3 177 995 stars. Results. A total of 42 420 dwarfs and giants stars are in common between the APOGEE DR14 – LAMOST DR3 stellar catalogs. A comparison between APOGEE and LAMOST RVs shows a clear offset of 4.54 ± 0.03 km s−1, with a dispersion of 5.8 km s−1, in the sense that APOGEE radial velocities are higher. We observe a small offset in the effective temperatures of about 13 K, with a scatter of 155 K. A small offset in [Fe/H] of about 0.06 dex together with a scatter of 0.13 dex is also observed. We note that the largest offset between the surveys occurs in the surface gravities. Using only surface gravities in calibrated red giants from APOGEE DR14, with which there are 24 074 stars in common, a deviation of 0.14 dex is found with substantial scatter (0.25 dex). There are 17 482 red giant stars in common between APOGEE DR14 and those in LAMOST tied to APOGEE DR12 via the code called the Cannon. There is generally good agreement between the two data-sets. However, we find that the differences in the stellar parameters depend on effective temperature. For metal-rich stars, a different trend for the [Fe/H] discrepancies is found. Surprisingly, we see no correlation between the internal APOGEE DR14 – DR12 differences in Teff and those in DR14 – LAMOST tied to DR12, where a correlation should be expected since LAMOST has been calibrated to APOGEE DR12. We find no correlation either between the [Fe/H] discrepancies, suggesting that LAMOST/Cannon is not well coupled to the APOGEE DR12 stellar parameter scale. An [Fe/H] dependence between the stellar parameters in APOGEE DR12 and those in DR14 is reported. We find a weak correlation in the differences between APOGEE DR14 – DR12 and LAMOST on DR12 surface gravity for stars hotter than 4800 K and in the log g range between 2.0 and 2.8 dex. We do not observe an [Fe/H] dependency in the gravity discrepancies.


2002 ◽  
Vol 187 ◽  
pp. 57-69
Author(s):  
Nami Mowlavi

The production of elements from helium-3 to fluorine in low- and intermediate-mass stars is reviewed and compared to chemical abundances observed at the surface of both red giant branch and asymptotic giant branch stars. It is highlighted that, while the trends predicted by standard models are generally well confirmed, many chemical abundances observed at the surface of red giants require the operation of non-standard mixing in the stellar interior. In addition, chemical abundance predictions from presently available asymptotic giant branch models further suffer from the uncertainties affecting the third dredge-up phenomenon, the source of neutrons and the hot bottom burning process.


2020 ◽  
Vol 642 ◽  
pp. A234
Author(s):  
Glenn-Michael Oomen ◽  
Onno Pols ◽  
Hans Van Winckel ◽  
Gijs Nelemans

Binary post-asymptotic giant branch (post-AGB) stars have orbital periods in the range of 100−2500 days in eccentric orbits. They are surrounded by circumbinary dusty discs. They are the immediate result of unconstrained binary interaction processes. Their observed orbital properties do not correspond to model predictions: Neither the periods nor the high eccentricities are expected. Indeed, many orbits are eccentric despite the strong tidal interaction when the primary had giant dimensions on the red giant branch and AGB. Our goal is to investigate if interactions between a binary and its circumbinary disc during the post-AGB phase can result in their eccentric orbits, while simultaneously explaining the chemical anomaly known as depletion. For this paper, we selected three binaries (EP Lyr, RU Cen, HD 46703) with well-constrained orbits, luminosities, and chemical abundances. We used the MESA code to evolve post-AGB models, while including the accretion of metal-poor gas. This allows us to constrain the evolution of the stars and study the impact of circumbinary discs on the orbital properties of the models. We investigate the effect of torques produced by gas inside the binary cavity and the effect of Lindblad resonances on the orbit, while also including the tidal interaction following the equilibrium tide model. We find that none of our models are able to explain the high orbital eccentricities of the binaries in our sample. The accretion torque does not significantly impact the binary orbit, while Lindblad resonances can pump the eccentricity up to only e ≈ 0.2. At higher eccentricities, the tidal interaction becomes too strong, so the high observed eccentricities cannot be reproduced. However, even if we assume tides to be ineffective, the eccentricities in our models do not exceed ≈0.25. Finally, the orbit of RU Cen is too wide to reproduce with disc-binary interactions by starting from a circular orbit. We conclude that either our knowledge of disc-binary interactions is still incomplete, or the binaries must have left their phase of strong interaction in an eccentric orbit.


Author(s):  
Jie Yu ◽  
Saskia Hekker ◽  
Timothy R Bedding ◽  
Dennis Stello ◽  
Daniel Huber ◽  
...  

Abstract Mass loss by red giants is an important process to understand the final stages of stellar evolution and the chemical enrichment of the interstellar medium. Mass-loss rates are thought to be controlled by pulsation-enhanced dust-driven outflows. Here we investigate the relationships between mass loss, pulsations, and radiation, using 3213 luminous Kepler red giants and 135000 ASAS–SN semiregulars and Miras. Mass-loss rates are traced by infrared colours using 2MASS and WISE and by observed-to-model WISE fluxes, and are also estimated using dust mass-loss rates from literature assuming a typical gas-to-dust mass ratio of 400. To specify the pulsations, we extract the period and height of the highest peak in the power spectrum of oscillation. Absolute magnitudes are obtained from the 2MASS Ks band and the Gaia DR2 parallaxes. Our results follow. (i) Substantial mass loss sets in at pulsation periods above ∼60 and ∼100 days, corresponding to Asymptotic-Giant-Branch stars at the base of the period-luminosity sequences C′ and C. (ii) The mass-loss rate starts to rapidly increase in semiregulars for which the luminosity is just above the red-giant-branch tip and gradually plateaus to a level similar to that of Miras. (iii) The mass-loss rates in Miras do not depend on luminosity, consistent with pulsation-enhanced dust-driven winds. (iv) The accumulated mass loss on the Red Giant Branch consistent with asteroseismic predictions reduces the masses of red-clump stars by 6.3%, less than the typical uncertainty on their asteroseismic masses. Thus mass loss is currently not a limitation of stellar age estimates for galactic archaeology studies.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ba Cao Nguyen ◽  
Xuan Nam Tran

In this paper, we analyze the performance of a full-duplex (FD) amplify-and-forward (AF) relay system with imperfect hardware. Besides the aggregate hardware impairments of the imperfect transceiver, we also consider the impact of residual self-interference (RSI) due to imperfect cancellation at the FD relay node. An analytical framework for analyzing the system performance including exact outage probability (OP), asymptotic OP, and approximate symbol error probability (SEP) is developed. In order to tackle these impacts, we propose an optimal power allocation scheme which can improve the outage performance of the FD relay node, especially at the high signal-to-noise ratio (SNR) regime. Numerical results are presented for various evaluation scenarios and verified using the Monte Carlo simulations.


1988 ◽  
Vol 7 (4) ◽  
pp. 527-534 ◽  
Author(s):  
M. Pettini

AbstractThe exceptional brightness of SN 1987A has provided a unique opportunity to probe intervening gas clouds in the disk and halo of our Galaxy and in the Large Magellanic Cloud, as well as intergalactic matter between the two. At the AAO we have exploited this opportunity in two ways: in searches for very weak interstellar features requiring exceptionally high signal-to-noise ratio spectra, and in recording known interstellar lines with unprecedentedly high spectral resolution. We are also monitoring photographically the evolution of the light-echoes to map the three-dimensional distribution of interstellar matter near the supernova. Surprisingly high column densities of million-degree gas have been found in the LMC through the first detection of [Fe X] in absorption. The hot gas may fill the interior of a ‘superbubble’, created by the combined effects of previous supernovae in this active region of star-formation; this cavity may be related to the shells of interstellar matter giving rise to the light-echoes. The ultra-high resolution observations, which required the rapid construction of a dedicated new spectrograph, were successful in resolving the hyperfine structure of the sodium D lines in several interstellar clouds. This implies that the clouds are at temperatures of at most 170 K and have internal turbulent velocities of no more than 0.3 km s−1, even though some are moving with high velocities relative to the Sun.


2017 ◽  
Vol 95 (9) ◽  
pp. 855-857
Author(s):  
Henrique Reggiani ◽  
Jorge Meléndez

The differential abundance analysis method can improve the precision of stellar chemical abundances. The method compares the equivalent widths of a certain line in a star with the same line in a star considered to be a standard representative of its class, using high resolution and high signal to noise ratio spectra. The method has achieved great results by reducing the measurement errors to unprecedentedly low levels. However, to date, there has not been a consistent analysis on the actual improvements of this method when compared to a classical analysis in metal-poor stars. Here we present a comparison between the errors of a classical stellar analysis and a differential analysis among low-metallicity stars.


2009 ◽  
Vol 5 (S268) ◽  
pp. 301-309
Author(s):  
Verne V. Smith

AbstractConnections between observations of the lithium abundance in various types of red giants and stellar evolution are discussed here. The emphasis is on three main topics; 1) the depletion of Li as stars ascend the red giant branch for the first time, 2) the synthesis of 7Li in luminous and massive asymptotic giant branch stars via the mechanism of hot-bottom burning, and 3) the possible multiple sources of excess Li abundances found in a tiny fraction of various types of G and K giants.


2021 ◽  
Vol 646 ◽  
pp. A150
Author(s):  
G. P. P. L. Otten ◽  
A. Vigan ◽  
E. Muslimov ◽  
M. N’Diaye ◽  
E. Choquet ◽  
...  

Studies of atmospheres of directly imaged extrasolar planets with high-resolution spectrographs have shown that their characterization is predominantly limited by noise on the stellar halo at the location of the studied exoplanet. An instrumental combination of high-contrast imaging and high spectral resolution that suppresses this noise and resolves the spectral lines can therefore yield higher quality spectra. We study the performance of the proposed HiRISE fiber coupling between the direct imager SPHERE and the spectrograph CRIRES+ at the Very Large Telescope for spectral characterization of directly imaged planets. Using end-to-end simulations of HiRISE we determine the signal-to-noise ratio (S/N) of the detection of molecular species for known extrasolar planets in H and K bands, and compare them to CRIRES+. We investigate the ultimate detection limits of HiRISE as a function of stellar magnitude, and we quantify the impact of different coronagraphs and of the system transmission. We find that HiRISE largely outperforms CRIRES+ for companions around bright hosts like β Pictoris or 51 Eridani. For an H = 3.5 host, we observe a gain of a factor of up to 16 in observing time with HiRISE to reach the same S/N on a companion at 200 mas. More generally, HiRISE provides better performance than CRIRES+ in 2 h integration times between 50 and 350 mas for hosts with H < 8.5 and between 50 and 700 mas for H < 7. For fainter hosts like PDS 70 and HIP 65426, no significant improvements are observed. We find that using no coronagraph yields the best S/N when characterizing known exoplanets due to higher transmission and fiber-based starlight suppression. We demonstrate that the overall transmission of the system is in fact the main driver of performance. Finally, we show that HiRISE outperforms the best detection limits of SPHERE for bright stars, opening major possibilities for the characterization of future planetary companions detected by other techniques.


2019 ◽  
Vol 71 (5) ◽  
Author(s):  
Shilin Zhang ◽  
Haining Li ◽  
Gang Zhao ◽  
Wako Aoki ◽  
Tadafumi Matsuno

Abstract We have performed chemical abundance analyses for a newly discovered metal-poor turn-off star (Teff = 6276 K, log g = 3.93, [Fe$/$H] = −2.93), LAMOST J011939.222−012150.45, based on high-resolution and high signal-to-noise ratio spectra in both optical and near-UV obtained by Subaru. Abundances have been derived for 20 elements, including 11 light elements such as C, N, Na, Mg, etc., and 9 neutron-capture elements from Sr to Pb. This object is a carbon-enhanced metal-poor star with a large carbon excess of [C$/$Fe] = +2.26. LAMOST J011939.222−012150.45 shows extreme enhancement in s-process elements, especially for Ba, La, and Pb ([Ba$/$Fe] = +3.16 ± 0.18, [La$/$Fe] = +2.29 ± 0.24, [Pb$/$Fe] = +3.38 ± 0.12). A very clear radial velocity variation has also been detected, providing evidence of the existence of a companion. Interestingly, even without any scaling, the observed abundance pattern from light to heavy neutron-capture elements agrees well with predictions of accretion from a companion asymptotic giant branch (AGB) star. Considering the evolutionary status of this object, its surface material is very likely to be completely accreted from its AGB companion and has been preserved until today.


Sign in / Sign up

Export Citation Format

Share Document