scholarly journals The e-MERGE Survey (e-MERLIN Galaxy Evolution Survey): overview and survey description

2020 ◽  
Vol 495 (1) ◽  
pp. 1188-1208 ◽  
Author(s):  
T W B Muxlow ◽  
A P Thomson ◽  
J F Radcliffe ◽  
N H Wrigley ◽  
R J Beswick ◽  
...  

ABSTRACT We present an overview and description of the e-MERGE Survey (e-MERLIN Galaxy Evolution Survey) Data Release 1 (DR1), a large program of high-resolution 1.5-GHz radio observations of the GOODS-N field comprising ∼140 h of observations with enhanced-Multi-Element Remotely Linked Interferometer Network (e-MERLIN) and ∼40 h with the Very Large Array (VLA). We combine the long baselines of e-MERLIN (providing high angular resolution) with the relatively closely packed antennas of the VLA (providing excellent surface brightness sensitivity) to produce a deep 1.5-GHz radio survey with the sensitivity (${\sim}1.5\, \mu$ Jy beam−1), angular resolution (0.2–0.7 arcsec) and field-of-view (∼15 × 15 arcmin2) to detect and spatially resolve star-forming galaxies and active galactic nucleus (AGN) at $z$ ≳ 1. The goal of e-MERGE is to provide new constraints on the deep, sub-arcsecond radio sky which will be surveyed by SKA1-mid. In this initial publication, we discuss our data analysis techniques, including steps taken to model in-beam source variability over an ∼20-yr baseline and the development of new point spread function/primary beam models to seamlessly merge e-MERLIN and VLA data in the uv plane. We present early science results, including measurements of the luminosities and/or linear sizes of ∼500 galaxies selected at 1.5 GHz. In combination with deep Hubble Space Telescope observations, we measure a mean radio-to-optical size ratio of re-MERGE/rHST ∼ 1.02 ± 0.03, suggesting that in most high-redshift galaxies, the ∼GHz continuum emission traces the stellar light seen in optical imaging. This is the first in a series of papers that will explore the ∼kpc-scale radio properties of star-forming galaxies and AGN in the GOODS-N field observed by e-MERGE DR1.

2020 ◽  
Vol 494 (2) ◽  
pp. 2312-2326 ◽  
Author(s):  
Cristiana Spingola ◽  
Anna Barnacka

ABSTRACT We present a multiwavelength analysis of two highly magnified strong gravitationally lensed galaxies, CLASS B0712+472 and CLASS B1608+656, at redshifts 1.34 and 1.394, respectively, using new VLBI (very long baseline interferometry) and archival Hubble Space Telescope observations. We reconstruct the positions of the radio and optical emissions with their uncertainties using Monte Carlo sampling. We find that in CLASS B0712+472 the optical and radio emissions are co-spatial within 2 ± 5 mas (17 ± 42 pc at redshift of 1.34). But, in CLASS B1608+656, we reconstruct an optical–radio offset of 25 ± 16 mas (214 ± 137 pc at redshift of 1.394), among the smallest offsets measured for an AGN (active galactic nucleus) at such high redshift. The spectral features indicate that CLASS B1608+656 is a post-merger galaxy, which, in combination with the optical–VLBI offset reported here, makes CLASS B1608+656 a promising candidate for a high- z offset–AGN. Furthermore, the milliarcsecond angular resolution of the VLBI observations combined with the precise lens models allow us to spatially locate the radio emission at 0.05 mas precision (0.4 pc) in CLASS B0712+472, and 0.009 mas precision (0.08 pc) in CLASS B1608+656. The search for optical–radio offsets in high redshift galaxies will be eased by the upcoming synoptic all-sky surveys, including Extremely Large Telescope and Square Kilometre Array, which are expected to find ∼105 strongly lensed galaxies, opening an era of large strong lensing samples observed at high angular resolution.


2019 ◽  
Vol 626 ◽  
pp. L2 ◽  
Author(s):  
S. Facchini ◽  
E. F. van Dishoeck ◽  
C. F. Manara ◽  
M. Tazzari ◽  
L. Maud ◽  
...  

The large majority of protoplanetary disks have very compact continuum emission (≲15 AU) at millimeter wavelengths. However, high angular resolution observations that resolve these small disks are still lacking, due to their intrinsically fainter emission compared with large bright disks. In this Letter we present 1.3 mm ALMA data of the faint disk (∼10 mJy) orbiting the TTauri star CX Tau at a resolution of ∼40 mas, ∼5 AU in diameter. The millimeter dust disk is compact, with a 68% enclosing flux radius of 14 AU, and the intensity profile exhibits a sharp drop between 10 and 20 AU, and a shallow tail between 20 and 40 AU. No clear signatures of substructure in the dust continuum are observed, down to the same sensitivity level of the DSHARP large program. However, the angular resolution does not allow us to detect substructures on the scale of the disk aspect ratio in the inner regions. The radial intensity profile closely resembles the inner regions of more extended disks imaged at the same resolution in DSHARP, but with no rings present in the outer disk. No inner cavity is detected, even though the disk has been classified as a transition disk from the spectral energy distribution in the near-infrared. The emission of 12CO is much more extended, with a 68% enclosing flux radius of 75 AU. The large difference of the millimeter dust and gas extents (> 5) strongly points to radial drift, and closely matches the predictions of theoretical models.


2001 ◽  
Vol 200 ◽  
pp. 117-121 ◽  
Author(s):  
Ralf Launhardt

The Bok globule CB230 (L1177) contains an active, low-mass star-forming core which is associated with a double NIR reflection nebula, a collimated bipolar molecular outflow, and strong mm continuum emission. The morphology of the NIR nebula suggests the presence of a deeply embedded, wide binary protostellar system. High-angular resolution observations now reveal the presence of two sub-cores, two distinct outflow centers, and an embedded accretion disk associated with the western bipolar NIR nebula. Judging from the separation and specific angular momentum, the CB230 double protostar system probably results from core fragmentation and will end up at the upper end of the pre-main sequence binary separation distribution.


2019 ◽  
Vol 486 (1) ◽  
pp. 21-41 ◽  
Author(s):  
R M Bielby ◽  
J P Stott ◽  
F Cullen ◽  
T M Tripp ◽  
J N Burchett ◽  
...  

ABSTRACT We present the first results from a study of O vi absorption around galaxies at z < 1.44 using data from a near-infrared grism spectroscopic Hubble Space Telescope Large Programme, the Quasar Sightline and Galaxy Evolution (QSAGE) survey. QSAGE is the first grism galaxy survey to focus on the circumgalactic medium at z ∼ 1, providing a blind survey of the galaxy population. The galaxy sample is H α flux limited (f(H α) > 2 × 10−17 erg s−1 cm−2) at 0.68 < z < 1.44, corresponding to ≳0.2–0.8 M⊙ yr−1. In this first of 12 fields, we combine the galaxy data with high-resolution STIS and COS spectroscopy of the background quasar to study O vi in the circumgalactic medium. At z ∼ 1, we find O vi absorption systems up to b ∼ 350 kpc (∼4Rvir) from the nearest detected galaxy. Further, we find ${\sim }50{{\ \rm per\ cent}}$ of ≳1 M⊙ yr−1 star-forming galaxies within 2Rvir show no associated O vi absorption to a limit of at least N(O vi) = 1013.9 cm−2. That we detect O vi at such large distances from galaxies and that a significant fraction of star-forming galaxies show no detectable O vi absorption disfavours outflows from ongoing star formation as the primary medium traced by these absorbers. Instead, by combining our own low- and high-redshift data with existing samples, we find tentative evidence for many strong (N(O vi) > 1014 cm−2) O vi absorption systems to be associated with M⋆ ∼ 109.5–10 M⊙ mass galaxies (Mhalo ∼ 1011.5–12 M⊙ dark matter haloes), and infer that they may be tracing predominantly collisionally ionized gas within the haloes of such galaxies.


1999 ◽  
Vol 186 ◽  
pp. 431-438
Author(s):  
M. Noguchi

A large number of high redshift galaxies observed with the Hubble Space Telescope (HST) show anomalous morphology and photometric properties, which may be an indication of evolutionary process in young galaxies. We show here by means of numerical simulations that the copious interstellar gas existing in the disks of rapidly collapsing protogalaxies can bring about these peculiarities. Gravitational instability in a gas-rich disk leads to the formation of massive gas clumps with a typical mass of 109M⊙. These subgalactic clumps make disk galaxy evolution a dynamically energetic and chaotic process, and give a natural explanation for peculiar morphology of high redshift galaxies. Moreover, the present model provides a new picture on the causal relationship between the emergence of quasar activities and the dynamical evolution of host galaxies. The clump-driven evolution model is also capable of explaining the correlations observed among present-day galaxies. Namely, the relative bulge dominance, existence of a thick disk, and a mass of the super-massive black hole situated at the galactic center should all be correlated positively. In contrast to their vigorous evolution in isolated state, primeval disk galaxies do not show any dramatic enhancement of activity or remarkable dynamical response in interaction with another galaxies.


Author(s):  
Michael W Topping ◽  
Alice E Shapley ◽  
Naveen A Reddy ◽  
Ryan L Sanders ◽  
Alison L Coil ◽  
...  

Abstract We present a joint analysis of rest-UV and rest-optical spectra obtained using Keck/LRIS and Keck/MOSFIRE for a sample of 62 star-forming galaxies at z ∼ 2.3. We divide our sample into two bins based on their location in the [OIII]5007/Hβ vs. [NII]6584/Hα BPT diagram, and perform the first differential study of the rest-UV properties of massive ionizing stars as a function of rest-optical emission-line ratios. Fitting BPASS stellar population synthesis models, including nebular continuum emission, to our rest-UV composite spectra, we find that high-redshift galaxies offset towards higher [OIII]λ5007/Hβ and [NII]λ6584/Hα have younger ages ($\log (\textrm {~Age/yr})=7.20^{+0.57}_{-0.20}$) and lower stellar metallicities ($Z_*=0.0010^{+0.0011}_{-0.0003}$) resulting in a harder ionizing spectrum, compared to the galaxies in our sample that lie on the local BPT star-forming sequence ($\log (\textrm {Age/yr})=8.57^{+0.88}_{-0.84}$, $Z_*=0.0019^{+0.0006}_{-0.0006}$). Additionally, we find that the offset galaxies have an ionization parameter of $\log (U)=-3.04^{+0.06}_{-0.11}$ and nebular metallicity of ($12+\log (\textrm {~O/H})=8.40^{+0.06}_{-0.07}$), and the non-offset galaxies have an ionization parameter of $\log (U)=-3.11^{+0.08}_{-0.08}$ and nebular metallicity of $12+\log (\textrm {~O/H})=8.30^{+0.05}_{-0.06}$. The stellar and nebular metallicities derived for our sample imply that the galaxies offset from the local BPT relation are more α-enhanced ($7.28^{+2.52}_{-2.82}\textrm {~O/Fe}_{\odot }$) compared to those consistent with the local sequence ($3.04^{+0.95}_{-0.54}\textrm {~O/Fe}_{\odot }$). However, even galaxies that are entirely consistent with the local nebular excitation sequence appear to be α-enhanced – in contrast with typical local systems. Such differences must be considered when estimating gas-phase oxygen abundances at high redshift based on strong emission-line ratios. Specifically, a similarity in the location of high-redshift and local galaxies in the BPT diagram may not be indicative of a similarity in their physical properties.


Author(s):  
Baptiste Faure ◽  
Frédéric Bournaud ◽  
Jérémy Fensch ◽  
Emanuele Daddi ◽  
Manuel Behrendt ◽  
...  

Abstract High-redshift star-forming galaxies have very different morphologies compared to nearby ones. Indeed, they are often dominated by bright star-forming structures of masses up to 108 − 9 M⊙ dubbed «giant clumps». However, recent observations questioned this result by showing only low-mass structures or no structure at all. We use Adaptative Mesh Refinement hydrodynamical simulations of galaxies with parsec-scale resolution to study the formation of structures inside clumpy high-redshift galaxies. We show that in very gas-rich galaxies star formation occurs in small gas clusters with masses below 107 − 8 M⊙ that are themselves located inside giant complexes with masses up to 108 and sometimes 109 M⊙ . Those massive structures are similar in mass and size to the giant clumps observed in imaging surveys, in particular with the Hubble Space Telescope. Using mock observations of simulated galaxies, we show that at very high resolution with instruments like the Atacama Large Millimeter Array or through gravitational lensing, only low-mass structures are likely to be detected, and their gathering into giant complexes might be missed. This leads to the non-detection of the giant clumps and therefore introduces a bias in the detection of these structures. We show that the simulated giant clumps can be gravitationally bound even when undetected in mocks representative for ALMA observations and HST observations of lensed galaxies. We then compare the top-down fragmentation of an initially warm disc and the bottom-up fragmentation of an initially cold disc to show that the process of formation of the clumps does not impact their physical properties.


2016 ◽  
Vol 11 (S321) ◽  
pp. 364-365
Author(s):  
Emmaris Soto ◽  
Duilia F. de Mello ◽  
Marc A. Rafelski ◽  
Jonathan P. Gardner ◽  
Anton M. Koekemoer

AbstractStudies of high redshift galaxies reveal compact sub-galactic regions of star formation, known as ‘clumps’. These ‘clumpy’ galaxies are useful for the study of galactic outskirts by enabling us to examine the radial progression of clumps over large time scales. We use the first deep high resolution NUV image from the Hubble Space Telescope covering intermediate redshifts to explore the implications this radial progression may have on galaxy evolution. From the analysis of 209 clumpy galaxies, we find that higher redshift clumps dominate the outer regions of galactic outskirts. This indicates that clumps may be migrating from the outskirts inward toward their galactic centers.


2020 ◽  
Vol 72 (2) ◽  
Author(s):  
Kazuyuki Ogura ◽  
Hideki Umehata ◽  
Yoshiaki Taniguchi ◽  
Yuichi Matsuda ◽  
Nobunari Kashikawa ◽  
...  

Abstract We present our ALMA Band 8 observations of a damped Ly$\alpha$ absorption (DLA) system at $z = 3.150$ observed in the spectrum of the quasar Q2233+131 at $z = 3.295$. The optical counterpart of this DLA has been identified and it shows a double-peaked Ly$\alpha$ emission line. Since one possible origin of DLAs at high redshift is an outflowing gas from star-forming galaxies, DLA 2233+131 provides a good laboratory to investigate the nature of high-z DLAs. Motivated by this, we have carried out ALMA band 8 observations to study the [C ii] line in this system. However, we do not detect any significant emission line in the observed pass bands. Instead, we have serendipitously found three submm continuum sources in the observed sky area. One appears to be the quasar Q2233+131 itself while the other two sources are newly identified submm galaxies (SMGs), called SMG1 and SMG2 in this paper. They are located at a separation of ${4{^{\prime \prime }_{.}}7}$ and ${8{^{\prime \prime }_{.}}1}$ from Q2233+131, respectively. Their 646 μm fluxes are $6.35\:$mJy and $6.43\:$mJy, respectively, being higher than that of Q2233+131, $3.62\:$mJy. Since these two SMGs are not detected in the optical images obtained with the Hubble Space Telescope and the Subaru Telescope, they have a very red spectral energy distribution. It is, therefore, suggested that they are high-redshift galaxies or very dusty galaxies at intermediate redshift, although we cannot rule out the possibility that they are optically very faint SMG analogs at low redshift. Follow-up observations will be necessary to explore the nature of this interesting region.


2021 ◽  
Vol 922 (1) ◽  
pp. 12
Author(s):  
Jessie Hirtenstein ◽  
Tucker Jones ◽  
Ryan L. Sanders ◽  
Crystal L. Martin ◽  
M. C. Cooper ◽  
...  

Abstract We present spatially resolved Hubble Space Telescope grism spectroscopy of 15 galaxies at z ∼ 0.8 drawn from the DEEP2 survey. We analyze Hα+[N ii], [S ii], and [S iii] emission on kiloparsec scales to explore which mechanisms are powering emission lines at high redshifts, testing which processes may be responsible for the well-known offset of high-redshift galaxies from the z ∼ 0 locus in the [O iii]/Hβ versus [N ii]/Hα Baldwin—Phillips—Terlevich (BPT) excitation diagram. We study spatially resolved emission-line maps to examine evidence for active galactic nuclei (AGN), shocks, diffuse ionized gas (DIG), or escaping ionizing radiation, all of which may contribute to the BPT offsets observed in our sample. We do not find significant evidence of AGN in our sample and quantify that, on average, AGN would need to contribute ∼25% of the Hα flux in the central resolution element in order to cause the observed BPT offsets. We find weak (2σ) evidence of DIG emission at low surface brightnesses, yielding an implied total DIG emission fraction of ∼20%, which is not significant enough to be the dominant emission line driver in our sample. In general we find that the observed emission is dominated by star-forming H ii regions. We discuss trends with demographic properties and the possible role of α-enhanced abundance patterns in the emission spectra of high-redshift galaxies. Our results indicate that photoionization modeling with stellar population synthesis inputs is a valid tool to explore the specific star formation properties which may cause BPT offsets, to be explored in future work.


Sign in / Sign up

Export Citation Format

Share Document