scholarly journals The fate of binary stars hosting planets upon interaction with Sgr A* black hole

2020 ◽  
Vol 496 (2) ◽  
pp. 1545-1553
Author(s):  
R Capuzzo-Dolcetta ◽  
N Davari

ABSTRACT Our Galaxy hosts a very massive object at its centre, often referred to as the supermassive black hole Sgr A*. Its gravitational tidal field is so intense that it can strip apart a binary star passing its vicinity and accelerate one of the components of the binary as hypervelocity star (HVS) and grab the other star as S-star. Taking into consideration that many binary star systems are known to host planets, in this paper we aim to broaden the study of the close interaction of binary stars and their planetary systems with Sgr A* massive object. Results are obtained via a high-precision N-body code including post-Newtonian approximation. We quantify the likelihood of capture and ejection of stars and planets after interaction with Sgr A*, finding that the fraction of stars captured around it is about three times that of the planets (∼49.4 per cent versus ∼14.5 per cent) and the fraction of hypervelocity planet ejection is about twice that of HVSs (∼21.7 per cent versus ∼9.0 per cent). The actual possibility of observational counterparts deserves further investigation.

2019 ◽  
Vol 14 (S351) ◽  
pp. 76-79 ◽  
Author(s):  
Nazanin Davari ◽  
Roberto Capuzzo-Dolcetta ◽  
Rainer Spurzem

AbstractWe present some preliminary results of our ongoing project about planetary systems around S-stars in the vicinity of Sgr A* black hole. Since S-stars might have migrated in the Galactic Centre (GC) from elsewhere, they probably still keep their planetary systems throughout their voyage. In this work, we study the destiny of their putative planetary systems after close interaction with the central black hole of our galaxy.


2018 ◽  
Vol 610 ◽  
pp. A34 ◽  
Author(s):  
D. Chuard ◽  
R. Terrier ◽  
A. Goldwurm ◽  
M. Clavel ◽  
S. Soldi ◽  
...  

Context. For a decade now, evidence has accumulated that giant molecular clouds located within the central molecular zone of our Galaxy reflect X-rays coming from past outbursts of the Galactic supermassive black hole. However, the number of illuminating events as well as their ages and durations are still unresolved questions. Aims. We aim to reconstruct parts of the history of the supermassive black hole Sgr A★ by studying this reflection phenomenon in the molecular complex Sgr C and by determining the line-of-sight positions of its main bright substructures. Methods. Using observations made with the X-ray observatories XMM-Newton and Chandra and between 2000 and 2014, we investigated the variability of the reflected emission, which consists of a Fe Kα line at 6.4 keV and a Compton continuum. We carried out an imaging and a spectral analysis. We also used a Monte Carlo model of the reflected spectra to constrain the line-of-sight positions of the brightest clumps, and hence to assign an approximate date to the associated illuminating events. Results. We show that the Fe Kα emission from Sgr C exhibits significant variability in both space and time, which confirms its reflection origin. The most likely illuminating source is Sgr A★. On the one hand, we report two distinct variability timescales, as one clump undergoes a sudden rise and fall in about 2005, while two others vary smoothly throughout the whole 2000–2014 period. On the other hand, by fitting the Monte Carlo model to the data, we are able to place tight constraints on the 3D positions of the clumps. These two independent approaches provide a consistent picture of the past activity of Sgr A★, since the two slowly varying clumps are located on the same wavefront, while the third (rapidly varying) clump corresponds to a different wavefront, that is, to a different illuminating event. Conclusions. This work shows that Sgr A★ experienced at least two powerful outbursts in the past 300 yrs, and for the first time, we provide an estimation of their age. Extending this approach to other molecular complexes, such as Sgr A, will allow this two-event scenario to be tested further.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Tim Johannsen

The no-hair theorem characterizes the fundamental nature of black holes in general relativity. This theorem can be tested observationally by measuring the mass and spin of a black hole as well as its quadrupole moment, which may deviate from the expected Kerr value. Sgr A*, the supermassive black hole at the center of the Milky Way, is a prime candidate for such tests thanks to its large angular size, high brightness, and rich population of nearby stars. In this paper, I discuss a new theoretical framework for a test of the no-hair theorem that is ideal for imaging observations of Sgr A* with very long baseline interferometry (VLBI). The approach is formulated in terms of a Kerr-like spacetime that depends on a free parameter and is regular everywhere outside of the event horizon. Together with the results from astrometric and timing observations, VLBI imaging of Sgr A* may lead to a secure test of the no-hair theorem.


2013 ◽  
Vol 9 (S303) ◽  
pp. 150-152 ◽  
Author(s):  
N. Sabha ◽  
M. Zamaninasab ◽  
A. Eckart ◽  
L. Moser

AbstractWe find a convex-like feature at a distance of 0.68 pc (17″) from the position of the supermassive black hole, Sgr A*, at the center of the nuclear stellar cluster. This feature resembles a stellar bow shock with a symmetry axis pointing to the center. We discuss the possible nature of the feature and the implications of its alignment with other dusty comet-like objects inside the central parsec.


2012 ◽  
Vol 8 (S290) ◽  
pp. 199-200 ◽  
Author(s):  
Bozena Czerny ◽  
Vladimír Karas ◽  
Devaky Kunneriath ◽  
Tapas K. Das

AbstractThe question of the origin of the gas supplying the accretion process is pertinent especially in the context of enhanced activity of Galactic Center during the past few hundred years, seen now as echo from the surrounding molecular clouds, and the currently observed new cloud approaching Sgr A*. We discuss the so-called Galactic Center mini-spiral as a possible source of material feeding the supermassive black hole on a 0.1 parsec scale. The collisions between individual clumps reduce their angular momentum. and set some of the clumps on a plunging trajectory.We conclude that the amount of material contained in the mini-spiral is sufficient to sustain the luminosity of Sgr A* at the required level. The accretion episodes of relatively dense gas from the mini-spiral passing through a transient ring mode at ~ 104 Rg provide a viable scenario for the bright phase of Galactic Center.


2020 ◽  
Vol 500 (4) ◽  
pp. 4866-4877
Author(s):  
A S Andrianov ◽  
A M Baryshev ◽  
H Falcke ◽  
I A Girin ◽  
T de Graauw ◽  
...  

ABSTRACT High-resolution imaging of supermassive black hole shadows is a direct way to verify the theory of general relativity under extreme gravity conditions. Very Long Baseline Interferometry (VLBI) observations at millimetre/submillimetre wavelengths can provide such angular resolution for the supermassive black holes located in Sgr A* and M87. Recent VLBI observations of M87 with the Event Horizon Telescope (EHT) have shown such capabilities. The maximum obtainable spatial resolution of the EHT is limited by the Earth's diameter and atmospheric phase variations. In order to improve the image resolution, longer baselines are required. The Radioastron space mission successfully demonstrated the capabilities of space–Earth VLBI with baselines much longer than the Earth's diameter. Millimetron is the next space mission of the Russian Space Agency and will operate at millimetre wavelengths. The nominal orbit of the observatory will be located around the Lagrangian L2 point of the Sun–Earth system. In order to optimize the VLBI mode, we consider a possible second stage of the mission that could use a near-Earth high elliptical orbit (HEO). In this paper, a set of near-Earth orbits is used for synthetic space–Earth VLBI observations of Sgr A* and M87 in a joint Millimetron and EHT configuration. General relativistic magnetohydrodynamic models for the supermassive black hole environments of Sgr A* and M87 are used for static and dynamic imaging simulations at 230 GHz. A comparison preformed between ground and space–Earth baselines demonstrates that joint observations with Millimetron and EHT significantly improve the image resolution and allow the EHT + Millimetron to obtain snapshot images of Sgr A*, probing the dynamics at fast time-scales.


2009 ◽  
Vol 18 (06) ◽  
pp. 889-910 ◽  
Author(s):  
MARK J. REID

This review outlines the observations that now provide an overwhelming scientific case that the center of the Milky Way harbors a supermassive black hole. Observations at infrared wavelength trace stars that orbit about a common focal position and require a central mass (M) of 4 × 106 M⊙ within a radius of 100 AU. Orbital speeds have been observed to exceed 5,000 km s-1. At the focal position there is an extremely compact radio source (Sgr A*), whose apparent size is near the Schwarzschild radius (2GM/c2). This radio source is motionless at the ~ 1 km s-1 level at the dynamical center of the Galaxy. The mass density required by these observations is now approaching the ultimate limit of a supermassive black hole within the last stable orbit for matter near the event horizon.


2016 ◽  
Vol 12 (S324) ◽  
pp. 317-321
Author(s):  
Stefano Gabici ◽  
Felix A. Aharonian ◽  
Emmanuel Moulin ◽  
Aion Viana

AbstractRecent very high energy observations of the galactic centre region performed by H.E.S.S. revealed the presence of a powerful PeVatron. This is the first of such objects detected, and its most plausible counterpart seems to be associated to Sgr A*, the supermassive black hole in the centre of our galaxy. The implications of this discovery will be discussed, in particular in the context of the problem of the origin of galactic cosmic rays.


2020 ◽  
Vol 641 ◽  
pp. A86
Author(s):  
B. Hastings ◽  
N. Langer ◽  
G. Koenigsberger

Context. Steady-state currents, so-called Eddington–Sweet circulation, result in the mixing of chemical elements in rotating stars, and in extreme cases lead to a homogeneous composition. Such circulation currents are also predicted in tidally deformed binary stars, which are thought to be progenitors of double black-hole merger events. Aims. This work aims to quantitatively characterise the steady-state circulation currents in components of a tidally locked binary system and to explore the effects of such currents on numerical models. Methods. Previous results describing the circulation velocity in a single rotating star and a tidally and rotationally distorted binary star are used to deduce a new prescription for the internal circulation in tidally locked binaries. We explore the effect of this prescription numerically with a detailed stellar evolution code for binary systems with initial orbital periods between 0.5 and 2.0 days, primary masses between 25 and 100 M⊙ and initial mass-ratios qi = 0.5, 0.7, 0.9, 1.0 at metallicity Z = Z⊙/50. Results. When comparing circulation velocities in the radial direction for the cases of a single rotating star and a binary star, it is found that the average circulation velocity in the binary star may be described as an enhancement to the circulation velocity in a single rotating star. This velocity enhancement is a simple function depending on the masses of the binary components and amounts to a factor of approximately two when the components have equal masses. After applying this enhancement to stellar models, it is found that the formation of double helium stars through efficient mixing occurs for systems with higher initial orbital periods, lower primary masses and lower mass ratios, compared to the standard circulation scenario. Taking into account appropriate distributions for primary mass, initial period and mass ratio, models with enhanced mixing predict 2.4 times more double helium stars being produced in the parameter space than models without. Conclusions. We conclude that the effects of companion-induced circulation have strong implications for the formation of close binary black holes through the chemically homogeneous evolution channel. Not only do the predicted detection rates increase but double black-hole systems with mass ratios as low as 0.8 may be formed when companion-induced circulation is taken into account.


Sign in / Sign up

Export Citation Format

Share Document