scholarly journals Evidence for a high mutual inclination between the cold Jupiter and transiting super Earth orbiting π Men

2020 ◽  
Vol 497 (2) ◽  
pp. 2096-2118 ◽  
Author(s):  
Jerry W Xuan ◽  
Mark C Wyatt

ABSTRACT π Men hosts a transiting super Earth (P ≈ 6.27 d, m ≈ 4.82 M⊕, R ≈ 2.04 R⊕) discovered by TESS and a cold Jupiter (P ≈ 2093 d, msin I ≈ 10.02 MJup, e ≈ 0.64) discovered from radial velocity. We use Gaia DR2 and Hipparcos astrometry to derive the star’s velocity caused by the orbiting planets and constrain the cold Jupiter’s sky-projected inclination (Ib = 41°−65°). From this, we derive the mutual inclination (ΔI) between the two planets, and find that 49° < ΔI < 131° (1σ) and 28° < ΔI < 152° (2σ). We examine the dynamics of the system using N-body simulations, and find that potentially large oscillations in the super Earth’s eccentricity and inclination are suppressed by general relativistic precession. However, nodal precession of the inner orbit around the invariable plane causes the super Earth to only transit between 7 and 22 per cent of the time, and to usually be observed as misaligned with the stellar spin axis. We repeat our analysis for HAT-P-11, finding a large ΔI between its close-in Neptune and cold Jupiter and similar dynamics. π Men and HAT-P-11 are prime examples of systems where dynamically hot outer planets excite their inner planets, with the effects of increasing planet eccentricities, planet–star misalignments, and potentially reducing the transit multiplicity. Formation of such systems likely involves scattering between multiple giant planets or misaligned protoplanetary discs. Future imaging of the faint debris disc in π Men and precise constraints on its stellar spin orientation would provide strong tests for these formation scenarios.


2020 ◽  
Vol 499 (4) ◽  
pp. 5059-5074
Author(s):  
Jerry W Xuan ◽  
Grant M Kennedy ◽  
Mark C Wyatt ◽  
Ben Yelverton

ABSTRACT HD 113337 and HD 38529 host pairs of giant planets, a debris disc, and wide M-type stellar companions. We measure the disc orientation with resolved images from Herschel and constrain the three-dimensional orbits of the outer planets with Gaia DR2 and Hipparcos astrometry. Resolved disc modelling leaves degeneracy in the disc orientation, so we derive four separate planet–disc mutual inclination (ΔI) solutions. The most aligned solutions give ΔI = 17°–32° for HD 113337 and ΔI = 21°–45○ for HD 38529 (both 1σ). In both systems, there is a small probability (<0.3 per cent) that the planet and disc are nearly aligned (ΔI < 3○). The stellar and planetary companions cause the orbits of disc material to precess about a plane defined by the forced inclination. We determine this as well as the precession time-scale to interpret the mutual inclination results. We find that the debris discs in both systems could be warped via joint influences of the outer planet and stellar companion, potentially explaining the observed misalignments. However, this requires HD 113337 to be old (0.8–1.7 Gyr), whereas if young (14–21 Myr), the observed misalignment in HD 113337 could be inherited from the protoplanetary disc phase. For both systems, the inclination of the stellar spin axis is consistent with the disc and outer planet inclinations, which instead supports system-wide alignment or near alignment. High-resolution observations of the discs and improved constraints on the planetary orbits would provide firmer conclusions about the (mis)alignment status.



2007 ◽  
Vol 3 (S249) ◽  
pp. 101-110 ◽  
Author(s):  
Roman V. Baluev

AbstractExisting algorithms of analysis of radial velocity time series are improved for the purposes of extrasolar planets detection and characterizing. Three important effects are considered: the poorly known radial velocity jitter, periodic systematic errors, and statistical bias due to non-linearity of models. Mathematical tools to account for these effects are developed and applied to a number of real planetary systems. In particular, it is shown that two outer planets of HD37124 are likely trapped in the 2/1 resonance. The dwarf star GJ876 may host an extra, Neptune-mass, planet which is in resonance with two giant planets in this system.



2018 ◽  
Vol 615 ◽  
pp. A153 ◽  
Author(s):  
Rodolfo G. Cionco ◽  
Dmitry A. Pavlov

Aims. The barycentric dynamics of the Sun has increasingly been attracting the attention of researchers from several fields, due to the idea that interactions between the Sun’s orbital motion and solar internal functioning could be possible. Existing high-precision ephemerides that have been used for that purpose do not include the effects of trans-Neptunian bodies, which cause a significant offset in the definition of the solar system’s barycentre. In addition, the majority of the dynamical parameters of the solar barycentric orbit are not routinely calculated according to these ephemerides or are not publicly available. Methods. We developed a special version of the IAA RAS lunar–solar–planetary ephemerides, EPM2017H, to cover the whole Holocene and 1 kyr into the future. We studied the basic and derived (e.g., orbital torque) barycentric dynamical quantities of the Sun for that time span. A harmonic analysis (which involves an application of VSOP2013 and TOP2013 planetary theories) was performed on these parameters to obtain a physics-based interpretation of the main periodicities present in the solar barycentric movement. Results. We present a high-precision solar barycentric orbit and derived dynamical parameters (using the solar system’s invariable plane as the reference plane), widely accessible for the whole Holocene and 1 kyr in the future. Several particularities and barycentric phenomena are presented and explained on dynamical bases. A comparison with the Jet Propulsion Laboratory DE431 ephemeris, whose main differences arise from the modelling of trans-Neptunian bodies, shows significant discrepancies in several parameters (i.e., not only limited to angular elements) related to the solar barycentric dynamics. In addition, we identify the main periodicities of the Sun’s barycentric movement and the main giant planets perturbations related to them.



2014 ◽  
Vol 23 (01) ◽  
pp. 1450006 ◽  
Author(s):  
L. IORIO

Analytical expressions for the orbital precessions affecting the relative motion of the components of a local binary system induced by Lorentz-violating Preferred Frame Effects (PFE) are explicitly computed in terms of the Parametrized Post-Newtonian (PPN) parameters α1, α2. Preliminary constraints on α1, α2 are inferred from the latest determinations of the observationally admitted ranges [Formula: see text] for any anomalous Solar System planetary perihelion precessions. Other bounds existing in the literature are critically reviewed, with particular emphasis on the constraint [Formula: see text] based on an interpretation of the current close alignment of the Sun's equator with the invariable plane of the Solar System in terms of the action of a α2-induced torque throughout the entire Solar System's existence. Taken individually, the supplementary precessions [Formula: see text] of Earth and Mercury, recently determined with the INPOP10a ephemerides without modeling PFE, yield α1 = (0.8±4) × 10-6 and α2 = (4±6) × 10-6, respectively. A linear combination of the supplementary perihelion precessions of all the inner planets of the Solar System, able to remove the a priori bias of unmodeled/mismodeled standard effects such as the general relativistic Lense–Thirring precessions and the classical rates due to the Sun's oblateness J2, allows to infer α1 = (-1 ± 6) × 10-6, α2 = (-0.9 ± 3.5) × 10-5. Such figures are obtained by assuming that the ranges of values for the anomalous perihelion precessions are entirely due to the unmodeled effects of α1 and α2. Our bounds should be improved in the near-mid future with the MESSENGER and, especially, BepiColombo spacecrafts. Nonetheless, it is worthwhile noticing that our constraints are close to those predicted for BepiColombo in two independent studies. In further dedicated planetary analyses, PFE may be explicitly modeled to estimate α1, α2 simultaneously with the other PPN parameters as well.



2012 ◽  
Vol 8 (S293) ◽  
pp. 146-151
Author(s):  
Dong Lai ◽  
Francois Foucart

AbstractThe Kepler satellite has discovered a number of transiting planets around close binary stars. These circumbinary systems have highly aligned planetary and binary orbits. In this paper, we explore how the mutual inclination between the planetary and binary orbits may reflect the physical conditions of the assembly of protoplanetary discs and the interaction between protostellar binaries and circumbinary discs. Given the turbulent nature of star-forming molecular clouds, it is possible that the infalling gas onto the outer region of a circumbinary disc rotates around a different axis compared to the central protostellar binary. Thus, the newly assembled circumbinary disc can be misaligned with respect to the binary. However, the gravitational torque from the binary produces warp and twist in the disc, and the back-reaction torque tends to align the disc and the binary orbital plane. We present a new, analytic calculation of this alignment torque, and show that the binary-disc inclination angle can be reduced appreciably after the binary accretes a few percent of its mass from the disc. Since mass accretion onto the proto-binary is very likely to occur, our calculation suggests that in the absence of other disturbances, circumbinary discs and planets around close (sub-AU) stellar binaries are highly aligned with the binary orbits, while discs and planets around wide binaries can be misaligned.



2018 ◽  
Vol 617 ◽  
pp. A76 ◽  
Author(s):  
G. Chauvin ◽  
R. Gratton ◽  
M. Bonnefoy ◽  
A.-M. Lagrange ◽  
J. de Boer ◽  
...  

Context. HD 95086 (A8V, 17 Myr) hosts a rare planetary system for which a multi-belt debris disk and a giant planet of 4–5 MJup have been directly imaged. Aims. Our study aims to characterize the global architecture of this young system using the combination of radial velocity and direct imaging observations. We want to characterize the physical and orbital properties of HD 95086 b, search for additional planets at short and wide orbits and image the cold outer debris belt in scattered light. Methods. We used HARPS at the ESO 3.6 m telescope to monitor the radial velocity of HD 95086 over two years and investigate the existence of giant planets at less than 3 au orbital distance. With the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE at VLT, we imaged the faint circumstellar environment beyond 10 au at six epochs between 2015 and 2017. Results. We do not detect additional giant planets around HD 95086. We identify the nature (bound companion or background contaminant) of all point-like sources detected in the IRDIS field of view. None of them correspond to the ones recently discovered near the edge of the cold outer belt by ALMA. HD 95086 b is resolved for the first time in J-band with IFS. Its near-infrared spectral energy distribution is well fitted by a few dusty and/or young L7–L9 dwarf spectral templates. The extremely red 1–4 μm spectral distribution is typical of low-gravity objects at the L/T spectral type transition. The planet’s orbital motion is resolved between January 2015 and May 2017. Together with past NaCo measurements properly re-calibrated, our orbital fitting solutions favor a retrograde low to moderate-eccentricity orbit e = 0.2+0.3−0.2, with a semi-major axis ~52 au corresponding to orbital periods of ~288 yr and an inclination that peaks at i = 141°, which is compatible with a planet-disk coplanar configuration. Finally, we report the detection in polarimetric differential imaging of the cold outer debris belt between 100 and 300 au, consistent in radial extent with recent ALMA 1.3 mm resolved observations.



2005 ◽  
Vol 13 ◽  
pp. 891-893
Author(s):  
Thierry Fouchet

AbstractIn this brief summary, I present recent progress on our knowledge of the Giant Planets and Titan atmospheric composition, as well as the impact of this progress on our understanding of Solar System formation, and atmospheric chemistry.



2019 ◽  
Vol 490 (1) ◽  
pp. 502-512 ◽  
Author(s):  
A L Wallace ◽  
M J Ireland

ABSTRACT Giant planets are expected to form at orbital radii that are relatively large compared to transit and radial velocity detections (>1 au). As a result, giant planet formation is best observed through direct imaging. By simulating the formation of giant (0.3–5MJ) planets by core accretion, we predict planet magnitude in the near-infrared (2–4 μm) and demonstrate that, once a planet reaches the runaway accretion phase, it is self-luminous and is bright enough to be detected in near-infrared wavelengths. Using planet distribution models consistent with existing radial velocity and imaging constraints, we simulate a large sample of systems with the same stellar and disc properties to determine how many planets can be detected. We find that current large (8–10 m) telescopes have at most a 0.2 per cent chance of detecting a core-accretion giant planet in the L’ band and 2 per cent in the K band for a typical solar-type star. Future instruments such as METIS and VIKiNG have higher sensitivity and are expected to detect exoplanets at a maximum rate of 2 and 8 per cent, respectively.



2019 ◽  
Vol 491 (4) ◽  
pp. 5248-5257 ◽  
Author(s):  
Robert A Wittenmyer ◽  
R P Butler ◽  
Jonathan Horner ◽  
Jake Clark ◽  
C G Tinney ◽  
...  

ABSTRACT Our knowledge of the populations and occurrence rates of planets orbiting evolved intermediate-mass stars lags behind that for solar-type stars by at least a decade. Some radial velocity surveys have targeted these low-luminosity giant stars, providing some insights into the properties of their planetary systems. Here, we present the final data release of the Pan-Pacific Planet Search (PPPS), a 5 yr radial velocity survey using the 3.9 m Anglo-Australian Telescope. We present 1293 precise radial velocity measurements for 129 stars, and highlight 6 potential substellar-mass companions, which require additional observations to confirm. Correcting for the substantial incompleteness in the sample, we estimate the occurrence rate of giant planets orbiting low-luminosity giant stars to be approximately 7.8$^{+9.1}_{-3.3}$ per cent. This result is consistent with the frequency of such planets found to orbit main-sequence A-type stars, from which the PPPS stars have evolved.





Sign in / Sign up

Export Citation Format

Share Document