TYC 8327-1678-1: a new super lithium-rich K giant

2020 ◽  
Vol 498 (1) ◽  
pp. 77-83
Author(s):  
N Holanda ◽  
N A Drake ◽  
C B Pereira

ABSTRACT In this work, we show that TYC 8327-1678-1 is a low-mass red giant star with a super lithium abundance in its atmosphere. For this, we used high-resolution spectroscopy to determine atmospheric parameters, the chemical abundances of the light elements and the isotopic ratio 12C/13C using the spectral synthesis techniques and the equivalent width measurements. Also, we used theoretical evolutionary tracks to find out the mass and the evolutionary stage of TYC 8327-1678-1. The lithium abundance was determined using the Li i resonance doublet at  6708 Å  and the subordinate line at  6104 Å that yielding a mean value of $\log \, \epsilon {\rm (Li)_{NLTE}}\, =\, 3.48$. The projected rotational velocity ($v\, \sin \, i$) has been determined using spectral synthesis based on the isolated Fe i lines. Our results show that TYC 8327-1678-1 has a mass of $M\, =\, 1.60$ $\pm \, 0.20\, {\rm M}_{\odot }$, a low rotational velocity ($v\, \sin \, i$ = 2.35 ± 0.24 km s−1) and metallicity of [Fe/H] = +0.23 ± 0.09. Finally, we discuss the possibility that TYC 8327-1678-1 became a lithium-rich star after a merging event involving a red giant and a helium white dwarf.

Author(s):  
N Holanda ◽  
N Drake ◽  
W J B Corradi ◽  
F A Ferreira ◽  
F Maia ◽  
...  

Abstract We present the results of a chemical analysis of fast and anomalous rotator giants members of the young open cluster NGC 6124. For this purpose, we carried out abundances of the mixing sensitive species such as Li, C, N, Na and 12C/13C isotopic ratio, as well as other chemical species for a sample of four giants among the seven observed ones. This study is based on standard spectral analysis technique using high-resolution spectroscopic data. We also performed an investigation of the rotational velocity (v sin  i) once this sample exhibit abnormal values – giant stars commonly present rotational velocities of few km s−1. In parallel, we have been performed a membership study, making use of the third data release from ESA Gaia mission. Based on these data, we estimated a distance of d = 630 pc and an age of 178 Myr through isochrone fitting. After that procedure, we matched all the information raised and investigated the evolutionary stages and thermohaline mixing model through of spectroscopic Teff and log  g and mixing tracers, as 12C/13C and Na, of the studied stars. We derived a low mean metallicity of [Fe/H] = −0.13 ±0.05 and a modest enhancement of the elements created by the s-process such as Y, Zr, La, Ce, and Nd, which is in agreement of what has already been reported in the literature for young clusters. The giants analyzed have homogeneous abundances, except for lithium abundance [log  ε(Li)NLTE = 1.08±0.42] and this may be associated to a combination of mechanisms that act increasing or decreasing lithium abundances in stellar atmospheres.


2018 ◽  
Vol 615 ◽  
pp. A74 ◽  
Author(s):  
Y. T. Zhou ◽  
J. R. Shi ◽  
H. L. Yan ◽  
Q. Gao ◽  
J. B. Zhang ◽  
...  

Context. The lithium abundances in a few percent of giants exceed the value predicted by the standard stellar evolution models, and the mechanisms of Li enhancement are still under debate. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey has obtained over six million spectra in the past five years, and thus provides a great opportunity to search these rare objects and to more clearly understand the mechanisms of Li enhancement. Aims. The aim of this work is to accurately measure the Li abundance and investigate the possible mechanisms of Li enrichment for a newly found super Li-rich giant, TYC 3251-581-1, located near the luminosity function bump with a low carbon isotopic ratio. Methods. Based on the high-resolution spectrum we obtained the stellar parameters (Teff, logg, [Fe/H]), and determined the elemental abundances of Li, C, N, α, Fe-peak, r-process, s-process elements, and the projected rotational velocity. For a better understanding of the effect of mixing processes, we also derived the 12C to 13C ratio, and constrained the evolutionary status of TYC 3251-581-1 based on the BaSTI stellar isochrones. Results. The super Li-rich giant TYC 3251-581-1 has A(Li) = 3.51, the average abundance of two lithium lines at λ = 6708 Å and 6104 Å based on the non-local thermodynamic equilibrium analysis. The atmospheric parameters show that our target locates on the luminosity function bump. The low carbon isotopic ratio (12C∕13C = 9.0), a slow rotational velocity vsini = 2.2 km s−1, and no sign of IR excess suggest that additional mixing after first dredge up (FDU) should occur to bring internal synthesized Li to the surface. The low carbon ([C∕Fe] ~−0.34) and enhanced nitrogen ([N∕Fe] ~ 0.33) are also consistent with the sign of mixing. Conclusions. Given the evolutionary stage of TYC 3251-581-1 with the relatively low 12C∕13C, the internal production which replenishes Li in the outer layer is the most likely origin of Li enhancement for this star.


Author(s):  
V Schaffenroth ◽  
S L Casewell ◽  
D Schneider ◽  
D Kilkenny ◽  
S Geier ◽  
...  

Abstract Subdwarf B stars are core-helium burning stars located on the extreme horizontal branch. Extensive mass loss on the red giant branch is necessary to form them. It has been proposed that substellar companions could lead to the required mass-loss when they are engulfed in the envelope of the red giant star. J08205+0008 was the first example of a hot subdwarf star with a close, substellar companion candidate to be found. Here we perform an in-depth re-analysis of this important system with much higher quality data allowing additional analysis methods. From the higher resolution spectra obtained with ESO-VLT/XSHOOTER we derive the chemical abundances of the hot subdwarf as well as its rotational velocity. Using the Gaia parallax and a fit to the spectral energy distribution in the secondary eclipse, tight constraints to the radius of the hot subdwarf are derived. From a long-term photometric campaign we detected a significant period decrease of $-3.2(8)\cdot 10^{-12} \, \rm dd^{-1}$. This can be explained by the non-synchronised hot subdwarf star being spun up by tidal interactions forcing it to become synchronised. From the rate of period decrease we could derive the synchronisation timescale to be 4 Myr, much smaller than the lifetime on EHB. By combining all different methods we could constrain the hot subdwarf to a mass of $0.39-0.50\, \rm M_\odot$ and a radius of $R_{\rm sdB}=0.194\pm 0.008\, \rm R_\odot$, and the companion to $0.061-0.071\rm \, M_\odot$ with a radius of $R_{\rm comp}=0.092 \pm 0.005\, \rm R_\odot$, below the hydrogen burning limit. We therefore confirm that the companion is most likely a massive brown dwarf.


Author(s):  
S. Ghazaryan ◽  
G. Alecian ◽  
A. A. Hakobyan

This talk is devoted to the statistical analysis of the new catalogue of Chemically Peculiar stars compiled from papers, where chemical abundances of those stars were given. The catalogue contains chemical abundances and physical parameters of 428 stars based on high-resolution spectroscopy data. Spearman's rank correlation test was applied for 416 CP (108 HgMn, 188 ApBp and 120 AmFm) stars and the correlation between chemical abundances and different physical parameters (effective temperature, surface gravity and rotational velocity) was checked. From dozens interesting cases we secluded four cases: the Mn peculiarities in HgMn stars, the Ca correlation with respect to effective temperature in AmFm stars, the case of helium and iron in ApBp stars. We applied also Anderson-Darling (AD) test on ApBp stars to check if multiplicity is a determinant parameter for abundance peculiarities.


2020 ◽  
Vol 643 ◽  
pp. A83
Author(s):  
C. C. Worley ◽  
P. Jofré ◽  
B. Rendle ◽  
A. Miglio ◽  
L. Magrini ◽  
...  

Context. The extensive stellar spectroscopic datasets that are available for studies in Galactic Archeaology thanks to, for example, the Gaia-ESO Survey, now benefit from having a significant number of targets that overlap with asteroseismology projects such as Kepler, K2, and CoRoT. Combining the measurements from spectroscopy and asteroseismology allows us to attain greater accuracy with regard to the stellar parameters needed to characterise the stellar populations of the Milky Way. Aims. The aim of this Gaia-ESO Survey special project is to produce a catalogue of self-consistent stellar parameters by combining measurements from high-resolution spectroscopy and precision asteroseismology. Methods. We carried out an iterative analysis of 90 K2@Gaia-ESO red giants. The spectroscopic values of Teff were used as input in the seismic analysis to obtain log g values. The seismic estimates of log g were then used to re-determine the spectroscopic values of Teff and [Fe/H]. Only one iteration was required to obtain parameters that are in good agreement for both methods and, thus, to obtain the final stellar parameters. A detailed analysis of outliers was carried out to ensure a robust determination of the parameters. The results were then combined with Gaia DR2 data to compare the seismic log g with a parallax-based log g and to investigate instances of variations in the velocity and possible binaries within the dataset. Results. This analysis produced a high-quality catalogue of stellar parameters for 90 red giant stars from K2@Gaia-ESO that were determined through iterations between spectroscopy and asteroseismology. We compared the seismic gravities with those based on Gaia parallaxes to find an offset which is similar to other studies that have used asteroseismology. Our catalogue also includes spectroscopic chemical abundances and radial velocities, as well as indicators for possible binary detections.


2018 ◽  
Vol 618 ◽  
pp. A16 ◽  
Author(s):  
G. Harutyunyan ◽  
M. Steffen ◽  
A. Mott ◽  
E. Caffau ◽  
G. Israelian ◽  
...  

Context. Convective motions in solar-type stellar atmospheres induce Doppler shifts that affect the strengths and shapes of spectral absorption lines and create slightly asymmetric line profiles. One-dimensional (1D) local thermodynamic equilibrium (LTE) studies of elemental abundances are not able to reproduce this phenomenon, which becomes particularly important when modeling the impact of isotopic fine structure, like the subtle depression created by the 6Li isotope on the red wing of the Li I resonance doublet line. Aims. The purpose of this work is to provide corrections for the lithium abundance, A(Li), and the 6Li/7Li isotopic ratio that can easily be applied to correct 1D LTE lithium abundances in G and F dwarf stars of approximately solar mass and metallicity for three-dimensional (3D) and non-LTE (NLTE) effects. Methods. The corrections for A(Li) and 6Li/7Li are computed using grids of 3D NLTE and 1D LTE synthetic lithium line profiles, generated from 3D hydro-dynamical CO5BOLD and 1D hydrostatic model atmospheres, respectively. For comparative purposes, all calculations are performed for three different line lists representing the Li I λ670.8 nm spectral region. The 3D NLTE corrections are then approximated by analytical expressions as a function of the stellar parameters (Teff, log ℊ, [Fe/H], ν sin i, A(Li), 6Li/7Li). These are applied to adjust the 1D LTE isotopic lithium abundances in two solar-type stars, HD 207129 and HD 95456, for which high-quality HARPS observations are available. Results. The derived 3D NLTE corrections range between −0.01 and +0.11 dex for A(Li), and between −4.9 and −0.4% for 6Li/7Li, depending on the adopted stellar parameters. We confirm that the inferred 6Li abundance depends critically on the strength of the Si I 670.8025 nm line. Our findings show a general consistency with recent works on lithium abundance corrections. After the application of such corrections, we do not find a significant amount of 6Li in any of the two target stars. Conclusions. In the case of 6Li/7Li, our corrections are always negative, showing that 1D LTE analysis can significantly overestimate the presence of 6Li (up to 4.9% points) in the atmospheres of solar-like dwarf stars. These results emphasize the importance of reliable 3D model atmospheres combined with NLTE line formation for deriving precise isotopic lithium abundances. Although 3D NLTE spectral synthesis implies an extensive computational effort, the results can be made accessible with parametric tools like the ones presented in this work.


2019 ◽  
Vol 629 ◽  
pp. A117 ◽  
Author(s):  
L. Origlia ◽  
E. Dalessandro ◽  
N. Sanna ◽  
A. Mucciarelli ◽  
E. Oliva ◽  
...  

Aims. The Scutum complex in the inner disk of the Galaxy hosts a number of young clusters and associations of red supergiant stars that are heavily obscured by dust extinction. These stars are important tracers of the recent star formation and chemical enrichment history in the inner Galaxy. Methods. Within the SPA Large Programme at the TNG, we secured GIANO-B high-resolution (R ≃ 50 000) YJHK spectra of 11 red supergiants toward the Alicante 7 and Alicante 10 associations near the RSGC3 cluster. Taking advantage of the full YJHK spectral coverage of GIANO in a single exposure, we were able to measure several hundreds of atomic and molecular lines that are suitable for chemical abundance determinations. We also measured a prominent diffuse interstellar band at λ1317.8 nm (vacuum). This provides an independent reddening estimate. Results. The radial velocities, Gaia proper motions, and extinction of seven red supergiants in Alicante 7 and three in Alicante 10 are consistent with them being members of the associations. One star toward Alicante 10 has kinematics and low extinction that are inconsistent with a membership. By means of spectral synthesis and line equivalent width measurements, we obtained chemical abundances for iron-peak, CNO, alpha, other light, and a few neutron-capture elements. We found average slightly subsolar iron abundances and solar-scaled [X/Fe] abundance patterns for most of the elements, consistent with a thin-disk chemistry. We found depletion of [C/Fe], enhancement of [N/Fe], and relatively low 12C/13C <  15, which is consistent with CN cycled material and possibly some additional mixing in their atmospheres.


2010 ◽  
Vol 6 (S272) ◽  
pp. 56-61
Author(s):  
Jose H. Groh

AbstractWhile theoretical studies have long suggested a fast-rotating nature of Luminous Blue Variables (LBVs), observational confirmation of fast rotation was not detected until recently. Here I discuss the diagnostics that have allowed us to constrain the rotational velocity of LBVs: broadening of spectral lines and latitude-dependent variations of the wind density structure. While rotational broadening can be directly detected using high-resolution spectroscopy, long-baseline near-infrared interferometry is needed to directly measure the shape of the latitude-dependent photosphere that forms in a fast-rotating star. In addition, complex 2-D radiative transfer models need to be employed if one's goal is to constrain rotational velocities of LBVs. Here I illustrate how the above methods were able to constrain the rotational velocities of the LBVs AG Carinae, HR Carinae, and Eta Carinae.


2019 ◽  
Vol 627 ◽  
pp. A173 ◽  
Author(s):  
M. Valentini ◽  
C. Chiappini ◽  
D. Bossini ◽  
A. Miglio ◽  
G. R. Davies ◽  
...  

Context. Very metal-poor halo stars are the best candidates for being among the oldest objects in our Galaxy. Samples of halo stars with age determination and detailed chemical composition measurements provide key information for constraining the nature of the first stellar generations and the nucleosynthesis in the metal-poor regime. Aims. Age estimates are very uncertain and are available for only a small number of metal-poor stars. We present the first results of a pilot programme aimed at deriving precise masses, ages, and chemical abundances for metal-poor halo giants using asteroseismology and high-resolution spectroscopy. Methods. We obtained high-resolution UVES spectra for four metal-poor RAVE stars observed by the K2 satellite. Seismic data obtained from K2 light curves helped improve spectroscopic temperatures, metallicities, and individual chemical abundances. Mass and ages were derived using the code PARAM, investigating the effects of different assumptions (e.g. mass loss and [α/Fe]-enhancement). Orbits were computed using Gaia DR2 data. Results. The stars are found to be normal metal-poor halo stars (i.e. non C-enhanced), and an abundance pattern typical of old stars (i.e. α and Eu-enhanced), and have masses in the 0.80−1.0 M⊙ range. The inferred model-dependent stellar ages are found to range from 7.4 Gyr to 13.0 Gyr with uncertainties of ∼30%−35%. We also provide revised masses and ages for metal-poor stars with Kepler seismic data from the APOGEE survey and a set of M4 stars. Conclusions. The present work shows that the combination of asteroseismology and high-resolution spectroscopy provides precise ages in the metal-poor regime. Most of the stars analysed in the present work (covering the metallicity range of [Fe/H] ∼ −0.8 to −2 dex) are very old >9 Gyr (14 out of 19 stars), and all of the stars are older than >5 Gyr (within the 68 percentile confidence level).


Author(s):  
Yoichi Takeda ◽  
Masashi Omiya ◽  
Hiroki Harakawa ◽  
Bun’ei Sato

Abstract Nitrogen abundances and carbon isotope ratios (12C$/$13C) in the atmospheres of red giants are known to be influenced by dredge-up of H-burning products, and serve as useful probes to study the nature of evolution-induced envelope mixing. We determined the [N/Fe] and 12C$/$13C ratios for 239 late-G/early-K giant stars by applying the spectrum-fitting technique to the 12CN and 13CN lines in the ∼8002–8005 Å region, with the aim of investigating how these quantities are related to other similar mixing-affected indicators which were already reported in our previous work. It was confirmed that [N/Fe] values are generally supersolar (typically by several tenths of a dex, though widely differing from star to star), anti-correlated with [C/Fe], and correlated with [Na/Fe], as expected from theory. As seen from their dependence upon stellar parameters, it appears that mixing tends to be enhanced with an increase of stellar luminosity (or mass) and rotational velocity, which is also reasonable from the theoretical viewpoint. In contrast, the resulting 12C$/$13C ratios turned out to be considerably diversified in the range of ∼5–50 (with a peak around ∼20), without showing any systematic dependence upon C or N abundance anomalies caused by the mixing of CN-cycled material. It thus appears that our understanding of the photospheric 12C$/$13C ratios in red giants is still incomplete, requiring more observational studies.


Sign in / Sign up

Export Citation Format

Share Document