scholarly journals Group-scale intrinsic galaxy alignments in the Illustris-TNG and MassiveBlack-II simulations

Author(s):  
Ananth Tenneti ◽  
Thomas D Kitching ◽  
Benjamin Joachimi ◽  
Tiziana Di Matteo

Abstract We study the alignments of satellite galaxies, and their anisotropic distribution, with respect to location and orientation of their host central galaxy in MassiveBlack-II and IllustrisTNG simulations. We find that: the shape of the satellite system in halos of mass (>1013h−1M⊙) is well aligned with the shape of the central galaxy at z = 0.06 with the mean alignment between the major axes being ∼Δθ = 12○ when compared to a uniform random distribution; that satellite galaxies tend to be anisotropically distributed along the major axis of the central galaxy with a stronger alignment in halos of higher mass or luminosity; and that the satellite distribution is more anisotropic for central galaxies with lower star formation rate, which are spheroidal, and for red central galaxies. Radially we find that satellites tend to be distributed along the major axis of the shape of the stellar component of central galaxies at smaller scales and the dark matter component on larger scales. We find that the dependence of satellite anisotropy on central galaxy properties and the radial distance is similar in both the simulations with a larger amplitude in MassiveBlack-II. The orientation of satellite galaxies tends to point toward the location of the central galaxy at small scales and this correlation decreases with increasing distance, and the amplitude of satellite alignment is higher in high mass halos. However, the projected ellipticities do not exhibit a scale-dependent radial alignment, as has been seen in some observational measurements.

Author(s):  
Jorge Peñarrubia

Abstract This paper uses statistical and N-body methods to explore a new mechanism to form binary stars with extremely large separations (≳ 0.1 pc), whose origin is poorly understood. Here, ultra-wide binaries arise via chance entrapment of unrelated stars in tidal streams of disrupting clusters. It is shown that (i) the formation of ultra-wide binaries is not limited to the lifetime of a cluster, but continues after the progenitor is fully disrupted, (ii) the formation rate is proportional to the local phase-space density of the tidal tails, (iii) the semimajor axis distribution scales as p(a)da ∼ a1/2da at a ≪ D, where D is the mean interstellar distance, and (vi) the eccentricity distribution is close to thermal, p(e)de = 2ede. Owing to their low binding energies, ultra-wide binaries can be disrupted by both the smooth tidal field and passing substructures. The time-scale on which tidal fluctuations dominate over the mean field is inversely proportional to the local density of compact substructures. Monte-Carlo experiments show that binaries subject to tidal evaporation follow p(a)da ∼ a−1da at a ≳ apeak, known as Öpik’s law, with a peak semi-major axis that contracts with time as apeak ∼ t−3/4. In contrast, a smooth Galactic potential introduces a sharp truncation at the tidal radius, p(a) ∼ 0 at a ≳ rt. The scaling relations of young clusters suggest that most ultra-wide binaries arise from the disruption of low-mass systems. Streams of globular clusters may be the birthplace of hundreds of ultra-wide binaries, making them ideal laboratories to probe clumpiness in the Galactic halo.


2019 ◽  
Vol 490 (4) ◽  
pp. 5693-5711 ◽  
Author(s):  
Sownak Bose ◽  
Daniel J Eisenstein ◽  
Lars Hernquist ◽  
Annalisa Pillepich ◽  
Dylan Nelson ◽  
...  

ABSTRACT We use the IllustrisTNG (TNG) simulations to explore the galaxy–halo connection as inferred from state-of-the-art cosmological, magnetohydrodynamical simulations. With the high-mass resolution and large volume achieved by combining the 100 Mpc (TNG100) and 300 Mpc (TNG300) volumes, we establish the mean occupancy of central and satellite galaxies and their dependence on the properties of the dark matter haloes hosting them. We derive best-fitting HOD parameters from TNG100 and TNG300 for target galaxy number densities of $\bar{n}_g = 0.032\,$  and $\bar{n}_g = 0.016\, h^3$ Mpc−3, respectively, corresponding to a minimum galaxy stellar mass of $M_\star \sim 1.9\times 10^9\, $ and $M_\star \sim 3.5\times 10^9\, {\rm M}_\odot$, respectively, in hosts more massive than $10^{11}\, {\rm M}_\odot$. Consistent with previous work, we find that haloes located in dense environments, with low concentrations, later formation times, and high angular momenta are richest in their satellite population. At low mass, highly concentrated haloes and those located in overdense regions are more likely to contain a central galaxy. The degree of environmental dependence is sensitive to the definition adopted for the physical boundary of the host halo. We examine the extent to which correlations between galaxy occupancy and halo properties are independent and demonstrate that HODs predicted by halo mass and present-day concentration capture the qualitative dependence on the remaining halo properties. At fixed halo mass, concentration is a strong predictor of the stellar mass of the central galaxy, which may play a defining role in the fate of the satellite population. The radial distribution of satellite galaxies, which exhibits a universal form across a wide range of host halo mass, is described accurately by the best-fitting NFW density profile of their host haloes.


2020 ◽  
Vol 499 (1) ◽  
pp. 230-268 ◽  
Author(s):  
Asa F L Bluck ◽  
Roberto Maiolino ◽  
Joanna M Piotrowska ◽  
James Trussler ◽  
Sara L Ellison ◽  
...  

ABSTRACT We investigate how star formation quenching proceeds within central and satellite galaxies using spatially resolved spectroscopy from the SDSS-IV MaNGA DR15. We adopt a complete sample of star formation rate surface densities (ΣSFR), derived in Bluck et al. (2020), to compute the distance at which each spaxel resides from the resolved star forming main sequence (ΣSFR − Σ* relation): ΔΣSFR. We study galaxy radial profiles in ΔΣSFR, and luminosity weighted stellar age (AgeL), split by a variety of intrinsic and environmental parameters. Via several statistical analyses, we establish that the quenching of central galaxies is governed by intrinsic parameters, with central velocity dispersion (σc) being the most important single parameter. High mass satellites quench in a very similar manner to centrals. Conversely, low mass satellite quenching is governed primarily by environmental parameters, with local galaxy overdensity (δ5) being the most important single parameter. Utilizing the empirical MBH − σc relation, we estimate that quenching via AGN feedback must occur at $M_{\rm BH} \ge 10^{6.5-7.5} \, \mathrm{M}_{\odot }$, and is marked by steeply rising ΔΣSFR radial profiles in the green valley, indicating ‘inside-out’ quenching. On the other hand, environmental quenching occurs at overdensities of 10–30 times the average galaxy density at z∼ 0.1, and is marked by steeply declining ΔΣSFR profiles, indicating ‘outside-in’ quenching. Finally, through an analysis of stellar metallicities, we conclude that both intrinsic and environmental quenching must incorporate significant starvation of gas supply.


2020 ◽  
Vol 634 ◽  
pp. A102 ◽  
Author(s):  
I. Proshina ◽  
O. Sil’chenko ◽  
A. Moiseev

Aims. Although S0 galaxies are often thought to be “red and dead”, they frequently demonstrate star formation organised in ring structures. We try to clarify the nature of this phenomenon and its difference from star formation in spiral galaxies. Here we study the moderate-luminosity nearby S0 galaxy, NGC 4513. Methods. By applying long-slit spectroscopy along the major axis of NGC 4513, we measured gas and star kinematics, Lick indices for the main body of the galaxy, and strong emission-line flux ratios in the ring. After inspecting the gas excitation in the ring using the line ratios diagnostic diagrams and showing that it is ionised by young stars, we determined the gas oxygen abundance using popular strong-line calibration methods. We estimated the star formation rate (SFR) in the outer ring using the archival Galaxy Evolution Explorer (GALEX) ultraviolet images of the galaxy. Results. The ionised gas counter-rotates the stars over the whole extension of NGC 4513 suggesting that it is being accreted from outside. The gas metallicity in the ring is slightly subsolar, [O/H] = −0.2 dex, matching the metallicity of the stellar component of the main galactic disc. However the stellar component of the ring is much more massive than can be explained by the current star formation level in the ring. We conclude that the ring of NGC 4513 is probably the result of tidal disruption of a massive gas-rich satellite, or may be the consequence of a long star-formation event provoked by gas accretion from a cosmological filament that started some 3 Gyr ago.


2010 ◽  
Vol 6 (S275) ◽  
pp. 3-10
Author(s):  
I. Felix Mirabel

AbstractSignificant historic cosmic evolution for the formation rate of stellar black holes is inferred from current theoretical models of the evolution of massive stars, the multiple observations of compact stellar remnants in the near and distant universe, and the cosmic chemical evolution. The mean mass of stellar black holes, the fraction of black holes/neutron stars, and the fraction of black hole high mass X-ray binaries (BH-HMXBs)/solitary black holes increase with redshift. The energetic feedback from large populations of BH-HMXBs form in the first generations of star burst galaxies has been overlooked in most cosmological models of the reionization epoch of the universe. The powerful radiation, jets, and winds from BH-HMXBs heat the intergalactic medium over large volumes of space and keep it ionized until AGN take over. It is concluded that stellar black holes constrained the properties of the faintest galaxies at high redshifts. I present here the theoretical and observational grounds for the historic cosmic evolution of stellar black holes. Detailed calculations on their cosmic impact are presented elsewhere (Mirabel, Dijkstra, Laurent, Loeb, & Pritchard 2011).


2014 ◽  
Vol 11 (S308) ◽  
pp. 448-451
Author(s):  
X. Kang ◽  
W.P. Lin ◽  
X. Dong ◽  
Y.O. Wang ◽  
A. Dutton ◽  
...  

AbstractGalaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some extent of mis-alignment. The massive haloes have stronger alignment than haloes in filament which connect massive haloes. This is contrary to the naive expectation that cosmic filament is the cause of halo alignment.


The equations of motion of a satellite in an orbit over an oblate earth in vacuo are solved analytically, by a perturbation method. The solution applies primarily to orbits of eccentricity 0⋅05 or less. The accuracy of the solution for radial distance should then be about 0⋅001%, and the error in angular travel about 0⋅001% per revolution. The earth’s oblateness has four main effects on the motion: (1) The orbital plane, instead of remaining fixed, rotates about the earth’s axis in the opposite direction to the satellite, at a rate of 10⋅00( R / r̄ ) 3.5 cos α deg./day, where α is the inclination of the orbital plane to the equator, R the earth’s equatorial radius and r̄ the satellite’s mean distance from the earth’s centre. (2) The period of revolution of the satellite, from one northward crossing of the equator to the next, is 14⋅5 √( R/r̄ ) sin 2 α sec greater for an inclined orbit than for an equatorial orbit. (3) The radial distance r from the earth’s centre changes. For a given angular momentum the mean r is 14⋅5 R/r̄ nautical miles greater for a polar orbit than an equatorial one. Also, during each revolution r oscillates twice, the amplitude of the oscillation being 0⋅94 ( R/r̄ ) sin 2 α n. miles. (4) The major axis of the orbit rotates in the orbital plane at a rate of 5⋅00( R/r̄ ) 3.5 (5 cos 2 α —1) deg./day. Thus it rotates in the same direction as the satellite if α < 63⋅4°, or in the opposite direction if α > 63⋅4°. A brief comparison is made between theory and observation for Sputniks 1 and 2.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 183
Author(s):  
Yongjie Liu ◽  
Yu Jiang ◽  
Hengnian Li ◽  
Hui Zhang

This paper intends to show some special types of orbits around Jupiter based on the mean element theory, including stationary orbits, sun-synchronous orbits, orbits at the critical inclination, and repeating ground track orbits. A gravity model concerning only the perturbations of J2 and J4 terms is used here. Compared with special orbits around the Earth, the orbit dynamics differ greatly: (1) There do not exist longitude drifts on stationary orbits due to non-spherical gravity since only J2 and J4 terms are taken into account in the gravity model. All points on stationary orbits are degenerate equilibrium points. Moreover, the satellite will oscillate in the radial and North-South directions after a sufficiently small perturbation of stationary orbits. (2) The inclinations of sun-synchronous orbits are always bigger than 90 degrees, but smaller than those for satellites around the Earth. (3) The critical inclinations are no-longer independent of the semi-major axis and eccentricity of the orbits. The results show that if the eccentricity is small, the critical inclinations will decrease as the altitudes of orbits increase; if the eccentricity is larger, the critical inclinations will increase as the altitudes of orbits increase. (4) The inclinations of repeating ground track orbits are monotonically increasing rapidly with respect to the altitudes of orbits.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 812
Author(s):  
Sotiris Lycourghiotis

The mean sea surface topography of the Ionian and Adriatic Seas has been determined. This was based on six-months of Global Navigation Satellite System (GNSS) measurements which were performed on the Ionian Queen (a ship). The measurements were analyzed following a double-path methodology based on differential GNSS (D-GNSS) and precise point positioning (PPP) analysis. Numerical filtering techniques, multi-parametric accuracy analysis and a new technique for removing the meteorological tide factors were also used. Results were compared with the EGM96 geoid model. The calculated differences ranged between 0 and 48 cm. The error of the results was estimated to fall within 3.31 cm. The 3D image of the marine topography in the region shows a nearly constant slope of 4 cm/km in the N–S direction. Thus, the effectiveness of the approach “repeated GNSS measurements on the same route of a ship” developed in the context of “GNSS methods on floating means” has been demonstrated. The application of this approach using systematic multi-track recordings on conventional liner ships is very promising, as it may open possibilities for widespread use of the methodology across the world.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2525
Author(s):  
Kamil Krasuski ◽  
Damian Wierzbicki

In the field of air navigation, there is a constant pursuit for new navigation solutions for precise GNSS (Global Navigation Satellite System) positioning of aircraft. This study aims to present the results of research on the development of a new method for improving the performance of PPP (Precise Point Positioning) positioning in the GPS (Global Positioning System) and GLONASS (Globalnaja Nawigacionnaja Sputnikovaya Sistema) systems for air navigation. The research method is based on a linear combination of individual position solutions from the GPS and GLONASS systems. The paper shows a computational scheme based on the linear combination for geocentric XYZ coordinates of an aircraft. The algorithm of the new research method uses the weighted mean method to determine the resultant aircraft position. The research method was tested on GPS and GLONASS kinematic data from an airborne experiment carried out with a Seneca Piper PA34-200T aircraft at the Mielec airport. A dual-frequency dual-system GPS/GLONASS receiver was placed on-board the plane, which made it possible to record GNSS observations, which were then used to calculate the aircraft’s position in CSRS-PPP software. The calculated XYZ position coordinates from the CSRS-PPP software were then used in the weighted mean model’s developed optimization algorithm. The measurement weights are a function of the number of GPS and GLONASS satellites and the inverse of the mean error square. The obtained coordinates of aircraft from the research model were verified with the RTK-OTF solution. As a result of the research, the presented solution’s accuracy is better by 11–87% for the model with a weighting scheme as a function of the inverse of the mean error square. Moreover, using the XYZ position from the RTKLIB program, the research method’s accuracy increases from 45% to 82% for the model with a weighting scheme as a function of the inverse of the square of mean error. The developed method demonstrates high efficiency for improving the performance of GPS and GLONASS solutions for the PPP measurement technology in air navigation.


Sign in / Sign up

Export Citation Format

Share Document