scholarly journals Deciphering the Origin of Ionized Gas in IC 1459 with VLT/MUSE

Author(s):  
C R Mulcahey ◽  
L J Prichard ◽  
D Krajnović ◽  
R A Jorgenson

Abstract IC 1459 is an early-type galaxy (ETG) with a rapidly counter-rotating stellar core, and is the central galaxy in a gas-rich group of spirals. In this work, we investigate the abundant ionized gas in IC 1459 and present new stellar orbital models to connect its complex array of observed properties and build a more complete picture of its evolution. Using the Multi-Unit Spectroscopic Explorer (MUSE), the optical integral field unit (IFU) on the Very Large Telescope (VLT), we examine the gas and stellar properties of IC 1459 to decipher the origin and powering mechanism of the galaxy’s ionized gas. We detect ionized gas in a non-disk-like structure rotating in the opposite sense to the central stars. Using emission-line flux ratios and velocity dispersion from full-spectral fitting, we find two kinematically distinct regions of shocked emission-line gas in IC 1459, which we distinguished using narrow (σ ≤ 155 km s−1) and broad (σ > 155 km s−1) profiles. Our results imply that the emission-line gas in IC 1459 has a different origin than that of its counter-rotating stellar component. We propose that the ionized gas is from late-stage accretion of gas from the group environment, which occurred long after the formation of the central stellar component. We find that shock heating and AGN activity are both ionizing mechanisms in IC 1459 but that the dominant excitation mechanism is by post-asymptotic giant branch stars from its old stellar population.

2004 ◽  
Vol 217 ◽  
pp. 386-388
Author(s):  
Michitoshi Yoshida ◽  
M. Yagi ◽  
S. Okamura ◽  
Y. Ohyama ◽  
N. Kashikawa ◽  
...  

We report here the results of deep optical spectroscopy of the very extended emission-line region (VEELR) found serendipitously around the Seyfert 2 galaxy NGC 4388 in the Virgo cluster. The Hα recession velocities of most of the filaments of the region observed are highly blue-shifted with respect to the systemic velocity of the galaxy. The velocity field is complicated, and there seem to be several streams of filaments ranging from ~ −100 km s−1 to ~ −700 km s−1 with respect to the systemic velocity of the galaxy. The emission-line ratios of the VEELR filaments are well explained by power-law photoionization models with solar abundances. In addition to photoionization, shock heating probably contributes to the ionization of the gas. We conclude that the VEELR was formerly the disk gas of NGC 4388, which has been stripped by ram pressure due to the interaction between the hot intra-cluster medium (ICM) and the galaxy.


1998 ◽  
Vol 184 ◽  
pp. 151-152
Author(s):  
M. Yoshida

We present results of an optical tri-dimensional observation of the central 2′ × 12″ region of the starburst galaxy NGC 2782. The circumnuclear Hα emission lines consist of broad (δv ~ 300 km s−1), blue-shifted component and narrow (δv < 100 km s−1) component and we first revealed the two-dimensional spatial distribution of those two components. The broad Hα emitting region is extended to 6″ (> 1 kpc) south from the nucleus and the emission-line ratios indicates that shock heating may be the main excitation mechanism of the ionized gas in the region. We conclude that this region is a superbubble outflowing from the nuclear starburst region.


2020 ◽  
Vol 492 (4) ◽  
pp. 4680-4696 ◽  
Author(s):  
Dominika Wylezalek ◽  
Anthony M Flores ◽  
Nadia L Zakamska ◽  
Jenny E Greene ◽  
Rogemar A Riffel

ABSTRACT The prevalence of outflow and feedback signatures in active galactic nuclei (AGNs is a major unresolved question which large integral field unit (IFU) surveys now allow to address. In this paper, we present a kinematic analysis of the ionized gas in 2778 galaxies at z ∼ 0.05 observed by Sloan Digital Sky Survey-IV (SDSS-IV) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). Specifically, we measure the kinematics of the [O iii] λ5007 Å emission line in each spatial element and fit multiple Gaussian components to account for possible non-gravitational motions of gas. Comparing the kinematics of the ionized gas between 308 MaNGA-selected AGNs that have been previously identified through emission-line diagnostics and sources not classified as AGN, we find that while 25 per cent of MaNGA-selected AGN show [O iii] components with emission-line widths of &gt;500 km s−1 in more than 10 per cent of their spaxels, only 7 per cent of MaNGA non-AGNs show a similar signature. Even the AGNs that do not show nuclear AGN photoionization signatures and that were only identified as AGN based on their larger scale photoionization signatures show similar kinematic characteristics. In addition to obscuration, another possibility is that outflow and mechanical feedback signatures are longer lived than the AGN itself. Our measurements demonstrate that high velocity gas is more prevalent in AGN compared to non-AGN and that outflow and feedback signatures in low-luminosity, low-redshift AGN may so far have been underestimated. We show that higher luminosity MaNGA-selected AGNs are able to drive larger scale outflows than lower luminosity AGN. But estimates of the kinetic coupling efficiencies are ≪1 per cent and suggest that the feedback signatures probed in this paper are unlikely to have a significant impact on the AGN host galaxies. However, continuous energy injection may still heat a fraction of the cool gas and delay or suppress star formation in individual galaxies even when the AGN is weak.


2018 ◽  
Vol 619 ◽  
pp. A83 ◽  
Author(s):  
B. Balmaverde ◽  
A. Capetti ◽  
A. Marconi ◽  
G. Venturi ◽  
M. Chiaberge ◽  
...  

We observed the FR II radio galaxy 3C 459 (z = 0.22) with the MUSE spectrograph at the Very Large Telescope (VLT) as part of the MURALES project (a MUse RAdio Loud Emission line Snapshot survey). We detected diffuse nuclear emission and a filamentary ionized gas structure forming a one-sided, triangular-shaped region extending out to ∼80 kpc. The central emission line region is dominated by two compact knots of similar flux: the first (N1) cospatial with the radio core and the (N2) second located 1″.2 (5.3 kpc) to the SE. The two regions differ dramatically from the point of view of velocity (with an offset of ∼400 km s−1), line widths, and line ratios. This suggests that we are observing a dual AGN system formed by a radio loud AGN and type 2 QSO companion, which is the result of the recent merger that also produced its disturbed host morphology. The alternative possibility that N2 is just a bright emission line knot resulting from, for example, a jet-cloud interaction, is disfavored because of (1) the presence of a high ionization bicone whose apex is located at N2; (2) the observed narrow line widths; (3) its line luminosity (∼1042 erg s−1) typical of luminous QSOs; and (4) its location, which is offset from the jet path. The putative secondary AGN must be highly obscured, since we do not detect any emission in the Chandra and infrared Hubble Space Telescope images.


2011 ◽  
Vol 7 (S284) ◽  
pp. 2-11 ◽  
Author(s):  
Claus Leitherer ◽  
Sylvia Ekström

AbstractThe current state-of-the-art of population synthesis is reviewed. The field is currently undergoing major revisions with the recognition of several key processes as new critical ingredients. Stochastic effects can artificially enhance or suppress certain evolutionary phases and/or stellar mass regimes and introduce systematic biases in, e.g., the determination of the stellar initial mass function. Post-main-sequence evolution is often associated with irregular variations of stellar properties on ultra-short time-scales. Examples are asymptotic giant branch stars and luminous blue variables, both of which are poorly treated in the models. Stars rarely form in isolation, and the fraction of truly single stars may be very small. Therefore, stellar multiplicity must be accounted for since many systems will develop tidal interaction over the course of their evolution. Last but not least, stellar rotation can drastically increase stellar temperatures and luminosities, which in turn leads to revised mass-to-light ratios in population synthesis models.


1997 ◽  
Vol 476 (1) ◽  
pp. 319-326 ◽  
Author(s):  
K. Justtanont ◽  
A. G. G. M. Tielens ◽  
C. J. Skinner ◽  
Michael R. Haas

2019 ◽  
Vol 15 (S359) ◽  
pp. 413-414
Author(s):  
María P. Agüero ◽  
Rubén Díaz ◽  
Mischa Schirmer

AbstractThis work is focused on the characterization of the Seyfert-2 galaxies hosting very large, ultra-luminous narrow-line regions (NLRs) at redshifts z = 0.2−0.34. With a space density of 4.4 Gcp−3 at z ∼ 0.3, these “Low Redshift Lyman-α Blob” (LAB) host galaxies are amongst the rarest objects in the universe, and represent an exceptional and short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). We present the study of GMOS spectra for 13 LAB galaxies covering the rest frame spectral range 3700–6700 Å. Predominantly, the [OIII]λ5007 emission line radial distribution is as widespread as that of the continuum one. The emission line profiles exhibit FWHM between 300–700 Km s−1. In 7 of 13 cases a broad kinematical component is detected with FWHM within the range 600–1100 Km s−1. The exceptionally high [OIII]λ5007 luminosity is responsible for very high equivalent width reaching 1500 Å at the nucleus.


2020 ◽  
Vol 501 (1) ◽  
pp. 933-947
Author(s):  
Javiera Parada ◽  
Jeremy Heyl ◽  
Harvey Richer ◽  
Paul Ripoche ◽  
Laurie Rousseau-Nepton

ABSTRACT We introduce a new distance determination method using carbon-rich asymptotic giant branch stars (CS) as standard candles and the Large and Small Magellanic Clouds (LMC and SMC) as the fundamental calibrators. We select the samples of CS from the ((J − Ks)0, J0) colour–magnitude diagrams, as, in this combination of filters, CS are bright and easy to identify. We fit the CS J-band luminosity functions using a Lorentzian distribution modified to allow the distribution to be asymmetric. We use the parameters of the best-fitting distribution to determine if the CS luminosity function of a given galaxy resembles that of the LMC or SMC. Based on this resemblance, we use either the LMC or SMC as the calibrator and estimate the distance to the given galaxy using the median J magnitude ($\overline{J}$) of the CS samples. We apply this new method to the two Local Group galaxies NGC 6822 and IC 1613. We find that NGC 6822 has an ‘LMC-like’ CS luminosity function, while IC 1613 is more ‘SMC-like’. Using the values for the median absolute J magnitude for the LMC and SMC found in Paper I we find a distance modulus of μ0 = 23.54 ± 0.03 (stat) for NGC 6822 and μ0 = 24.34 ± 0.05 (stat) for IC 1613.


Author(s):  
Jie Yu ◽  
Saskia Hekker ◽  
Timothy R Bedding ◽  
Dennis Stello ◽  
Daniel Huber ◽  
...  

Abstract Mass loss by red giants is an important process to understand the final stages of stellar evolution and the chemical enrichment of the interstellar medium. Mass-loss rates are thought to be controlled by pulsation-enhanced dust-driven outflows. Here we investigate the relationships between mass loss, pulsations, and radiation, using 3213 luminous Kepler red giants and 135000 ASAS–SN semiregulars and Miras. Mass-loss rates are traced by infrared colours using 2MASS and WISE and by observed-to-model WISE fluxes, and are also estimated using dust mass-loss rates from literature assuming a typical gas-to-dust mass ratio of 400. To specify the pulsations, we extract the period and height of the highest peak in the power spectrum of oscillation. Absolute magnitudes are obtained from the 2MASS Ks band and the Gaia DR2 parallaxes. Our results follow. (i) Substantial mass loss sets in at pulsation periods above ∼60 and ∼100 days, corresponding to Asymptotic-Giant-Branch stars at the base of the period-luminosity sequences C′ and C. (ii) The mass-loss rate starts to rapidly increase in semiregulars for which the luminosity is just above the red-giant-branch tip and gradually plateaus to a level similar to that of Miras. (iii) The mass-loss rates in Miras do not depend on luminosity, consistent with pulsation-enhanced dust-driven winds. (iv) The accumulated mass loss on the Red Giant Branch consistent with asteroseismic predictions reduces the masses of red-clump stars by 6.3%, less than the typical uncertainty on their asteroseismic masses. Thus mass loss is currently not a limitation of stellar age estimates for galactic archaeology studies.


2021 ◽  
Author(s):  
Krati Joshi ◽  
Ashakiran Maibam ◽  
Sailaja Krishnamurty

Silicon carbide clusters are significant due to their predominant occurrence in meteoric star dust, particularly in carbon rich asymptotic giant branch stars. Of late, they have also been recognized as...


Sign in / Sign up

Export Citation Format

Share Document