scholarly journals Massive young stellar objects in the Local Group irregular galaxy NGC 6822 identified using machine learning

2021 ◽  
Vol 507 (4) ◽  
pp. 5106-5131
Author(s):  
David A Kinson ◽  
Joana M Oliveira ◽  
Jacco Th van Loon

ABSTRACT We present a supervised machine learning methodology to classify stellar populations in the Local Group dwarf-irregular galaxy NGC 6822. Near-IR colours (J − H, H − K, and J − K), K-band magnitudes and far-IR surface brightness (at 70 and 160 $\mu$m) measured from Spitzer and Herschel images are the features used to train a Probabilistic Random Forest (PRF) classifier. Point-sources are classified into eight target classes: young stellar objects (YSOs), oxygen- and carbon-rich asymptotic giant branch stars, red giant branch and red supergiant stars, active galactic nuclei, massive main-sequence stars, and Galactic foreground stars. The PRF identifies sources with an accuracy of ∼ 90 per cent across all target classes rising to ∼96 per cent for YSOs. We confirm the nature of 125 out of 277 literature YSO candidates with sufficient feature information, and identify 199 new YSOs and candidates. Whilst these are mostly located in known star-forming regions, we have also identified new star formation sites. These YSOs have mass estimates between ∼15 and 50 M⊙, representing the most massive YSO population in NGC 6822. Another 82 out of 277 literature candidates are definitively classified as non-YSOs by the PRF analysis. We characterize the star formation environment by comparing the spatial distribution of YSOs to those of gas and dust using archival images. We also explore the potential of using (unsupervised) t-distributed stochastic neighbour embedding maps for the identification of the same stellar population classified by the PRF.

2003 ◽  
Vol 590 (1) ◽  
pp. L17-L20 ◽  
Author(s):  
Yutaka Komiyama ◽  
Sadanori Okamura ◽  
Masafumi Yagi ◽  
Hisanori Furusawa ◽  
Mamoru Doi ◽  
...  

1999 ◽  
Vol 51 (6) ◽  
pp. 791-818 ◽  
Author(s):  
Reiko Yamaguchi ◽  
Hiro Saito ◽  
Norikazu Mizuno ◽  
Yoshihiro Mine ◽  
Akira Mizuno ◽  
...  

Abstract We have carried out extensive 13CO(J = 1−0) observations toward 23 southern H II regions associated with bright-rimmed clouds. In total, 95 molecular clouds have been identified to be associated with the H II regions. Among the 95, 57 clouds \ are found to be associated with 204 IRAS point sources which are candidates for young stellar objects. There is a significant increase of star-formation efficiency on the side facing to the H II regions; the luminosity-to-mass ratio, defined as the ratio of the stellar luminosity to the molecular cloud mass, is higher by an order of magnitude on the near side of the H II regions than that on the far side. This indicates that molecular gas facing to the H II regions is more actively forming massive s\ tars whose luminosity is ≳103L⊙. In addition, the number density of the IRAS point sources increases by a factor of 2 on the near side of the H II regions compared with on the far side. These results strongly suggest that the active formation of massive stars on the near side of the H II regions is due to the effects of the H II regions, such as the compression of molecular material by the ionization/shock fronts. For the whole Galaxy, we estimate that the present star-formation rate under such effects is at least 0.2−0.4 M⊙ yr-1, corresponding to a few 10% by mass.


1996 ◽  
Vol 112 ◽  
pp. 2596 ◽  
Author(s):  
C. Gallart ◽  
A. Aparicio ◽  
G. Bertelli ◽  
C. Chiosi

2021 ◽  
pp. 100470
Author(s):  
Y.-L. Chiu ◽  
C.-T. Ho ◽  
D.-W. Wang ◽  
S.-P. Lai

2020 ◽  
Vol 496 (1) ◽  
pp. 870-874
Author(s):  
M B Areal ◽  
A Buccino ◽  
S Paron ◽  
C Fariña ◽  
M E Ortega

ABSTRACT Evidence for triggered star formation linking three generations of stars is difficult to assemble, as it requires convincingly associating evolved massive stars with H ii regions that, in turn, would need to present signs of active star formation. We present observational evidence for triggered star formation relating three generations of stars in the neighbourhood of the star LS II +26 8. We carried out new spectroscopic observations of LS II +26 8, revealing that it is a B0 III-type star. We note that LS II +26 8 is located exactly at the geometric centre of a semi-shell-like H ii region complex. The most conspicuous component of this complex is the H ii region Sh2-90, which is probably triggering a new generation of stars. The distances to LS II +26 8 and to Sh2-90 are in agreement (between 2.6 and 3 kpc). Analysis of the interstellar medium on a larger spatial scale shows that the H ii region complex lies on the north-western border of an extended H2 shell. The radius of this molecular shell is about 13 pc, which is in agreement with what an O9 V star (the probable initial spectral type of LS II +26 8 as inferred from evolutive tracks) can generate through its winds in the molecular environment. In conclusion, the spatial and temporal correspondences derived in our analysis enable us to propose a probable triggered star formation scenario initiated by the evolved massive star LS II +26 8 during its main-sequence stage, followed by stars exciting the H ii region complex formed in the molecular shell, and culminating in the birth of young stellar objects around Sh2-90.


2004 ◽  
Vol 82 (6) ◽  
pp. 740-743 ◽  
Author(s):  
P A Feldman ◽  
R O Redman ◽  
L W Avery ◽  
J Di Francesco ◽  
J D Fiege ◽  
...  

The line profiles of dense cores in infrared-dark clouds indicate the presence of young stellar objects (YSOs), but the youth of the YSOs and the large distances to the clouds make it difficult to distinguish the outflows that normally accompany star formation from turbulence within the cloud. We report here the first unambiguous identification of a bipolar outflow from a young stellar object (YSO) in an infrared-dark cloud, using observations of SiO to distinguish the relatively small amounts of gas in the outflow from the rest of the ambient cloud. Key words: infrared-dark clouds, star formation, bipolar outflows, SiO, G81.56+0.10.


2006 ◽  
Vol 2 (S237) ◽  
pp. 482-482 ◽  
Author(s):  
J. S. Urquhart ◽  
A. L. Busfield ◽  
M. G. Hoare ◽  
S. L. Lumsden ◽  
A. J. Clarke ◽  
...  

AbstractThe Red MSX Source (RMS) survey (Hoare et al. 2005) is a multi-wavelength programme of follow-up observations designed to distinguish between genuine massive young stellar objects (MYSOs) and other embedded or dusty objects, such as ultra compact (UC) HII regions, evolved stars and planetary nebulae (PNe). We have identified nearly 2000 MYSOs candidates by comparing the colours of MSX and 2MASS point sources to those of known MYSOs. There are several other types of embedded or dust enshrouded objects that have similar colours as MYSOs and contaminate our sample. Two sources of contamination are from UCHII regions and PNe, both of which can be identified from the radio emission emitted by their ionised nebulae. In order to identify UCHII regions and PNe that contaminate our sample we have conducted high resolution radio continuum observations at 3.6 and 6 cm of all southern MYSOs candidates (235° < l < 350°) using the Australia Telescope Compact Array (ATCA).


2019 ◽  
Vol 487 (2) ◽  
pp. 2522-2537 ◽  
Author(s):  
G Marton ◽  
P Ábrahám ◽  
E Szegedi-Elek ◽  
J Varga ◽  
M Kun ◽  
...  

ABSTRACT The second Gaia Data Release (DR2) contains astrometric and photometric data for more than 1.6 billion objects with mean Gaia G magnitude &lt;20.7, including many Young Stellar Objects (YSOs) in different evolutionary stages. In order to explore the YSO population of the Milky Way, we combined the Gaia DR2 data base with Wide-field Infrared Survey Explorer (WISE) and Planck measurements and made an all-sky probabilistic catalogue of YSOs using machine learning techniques, such as Support Vector Machines, Random Forests, or Neural Networks. Our input catalogue contains 103 million objects from the DR2xAllWISE cross-match table. We classified each object into four main classes: YSOs, extragalactic objects, main-sequence stars, and evolved stars. At a 90 per cent probability threshold, we identified 1 129 295 YSO candidates. To demonstrate the quality and potential of our YSO catalogue, here we present two applications of it. (1) We explore the 3D structure of the Orion A star-forming complex and show that the spatial distribution of the YSOs classified by our procedure is in agreement with recent results from the literature. (2) We use our catalogue to classify published Gaia Science Alerts. As Gaia measures the sources at multiple epochs, it can efficiently discover transient events, including sudden brightness changes of YSOs caused by dynamic processes of their circumstellar disc. However, in many cases the physical nature of the published alert sources are not known. A cross-check with our new catalogue shows that about 30 per cent more of the published Gaia alerts can most likely be attributed to YSO activity. The catalogue can be also useful to identify YSOs among future Gaia alerts.


Sign in / Sign up

Export Citation Format

Share Document