scholarly journals Comptonization by reconnection plasmoids in black hole coronae I: Magnetically dominated pair plasma

Author(s):  
Navin Sridhar ◽  
Lorenzo Sironi ◽  
Andrei M Beloborodov

Abstract We perform two-dimensional particle-in-cell simulations of reconnection in magnetically dominated electron-positron plasmas subject to strong Compton cooling. We vary the magnetization σ ≫ 1, defined as the ratio of magnetic tension to plasma inertia, and the strength of cooling losses. Magnetic reconnection under such conditions can operate in magnetically dominated coronae around accreting black holes, which produce hard X-rays through Comptonization of seed soft photons. We find that the particle energy spectrum is dominated by a peak at mildly relativistic energies, which results from bulk motions of cooled plasmoids. The peak has a quasi-Maxwellian shape with an effective temperature of ∼100 keV, which depends only weakly on the flow magnetization and the strength of radiative cooling. The mean bulk energy of the reconnected plasma is roughly independent of σ, whereas the variance is larger for higher magnetizations. The spectra also display a high-energy tail, which receives ∼25 per cent of the dissipated reconnection power for σ = 10 and ∼40 per cent for σ = 40. We complement our particle-in-cell studies with a Monte Carlo simulation of the transfer of seed soft photons through the reconnection layer, and find the escaping X-ray spectrum. The simulation demonstrates that Comptonization is dominated by the bulk motions in the chain of Compton-cooled plasmoids and, for σ ∼ 10, yields a spectrum consistent with the typical hard state of accreting black holes.

2020 ◽  
Vol 498 (1) ◽  
pp. 799-820 ◽  
Author(s):  
J M Mehlhaff ◽  
G R Werner ◽  
D A Uzdensky ◽  
M C Begelman

ABSTRACT Rapid gamma-ray flares pose an astrophysical puzzle, requiring mechanisms both to accelerate energetic particles and to produce fast observed variability. These dual requirements may be satisfied by collisionless relativistic magnetic reconnection. On the one hand, relativistic reconnection can energize gamma-ray emitting electrons. On the other hand, as previous kinetic simulations have shown, the reconnection acceleration mechanism preferentially focuses high energy particles – and their emitted photons – into beams, which may create rapid blips in flux as they cross a telescope’s line of sight. Using a series of 2D pair-plasma particle-in-cell simulations, we explicitly demonstrate the critical role played by radiative (specifically inverse Compton) cooling in mediating the observable signatures of this ‘kinetic beaming’ effect. Only in our efficiently cooled simulations do we measure kinetic beaming beyond one light crossing time of the reconnection layer. We find a correlation between the cooling strength and the photon energy range across which persistent kinetic beaming occurs: stronger cooling coincides with a wider range of beamed photon energies. We also apply our results to rapid gamma-ray flares in flat-spectrum radio quasars, suggesting that a paradigm of radiatively efficient kinetic beaming constrains relevant emission models. In particular, beaming-produced variability may be more easily realized in two-zone (e.g. spine-sheath) set-ups, with Compton seed photons originating in the jet itself, rather than in one-zone external Compton scenarios.


2014 ◽  
Vol 32 (4) ◽  
pp. 523-529 ◽  
Author(s):  
H. Mehdian ◽  
A. Kargarian ◽  
K. Hajisharifi

AbstractThe one-dimensional behavior of a thin plasma foil heated by laser is studied, emphasizing on the fully kinetic effects associated with initial energetic electrons using a relativistic kinetic 1D3V Particle-In-Cell code. For this purpose, the generalized Lorentzian (Kappa) function inclusive the high energy tail is employed for initial electron distribution. The presence of the initially high-energy electrons leads to a different ion energy spectrum than the initially Maxwellian distribution. It is shown for the smaller Kappa parameter k where the high energy tail of the electron distribution function becomes more significant, the electron cooling rate increases. Moreover, the spatiotemporal evolution of electric field is strongly affected by the initial super-thermal electrons.


1994 ◽  
Vol 159 ◽  
pp. 317-317
Author(s):  
M. Bałucińska-Church ◽  
L. Piro ◽  
H. Fink ◽  
F. Fiore ◽  
M. Matsuoka ◽  
...  

SummaryWe report results of an international UV – X-ray campaign in 1990–1992 involving the IUE, Rosat and Ginga satellites to observe E1615+061, a Seyfert 1 galaxy with peculiar spectral and intensity behaviour over the last 20 years. The source has been found to be stable in its medium state during the observations. The Ginga (1–20 keV) spectrum of E1615+061 is adequately represented by a simple power law with a photon index α = 1.8 ± 0.1. However, α ∼ 2, as expected for the intrinsic power law component in a reflection model, cannot be ruled out statistically. The Rosat PSPC (0.1–2 keV) spectra collected during the All Sky Survey and the AO-1 phase can be well-described by a simple power law (α = 2.2 ± 0.1) with cold absorber (NH = 3.5 ± 0.3 · 10λ20 H/cmλ2). Both the photon index being significantly different than that obtained from the Ginga spectrum and the column density being smaller than the galactic column (NH ∼ 4.2 · 10λ20 H/cmλ2) give an indication of a soft excess over and above the hard component seen in the Ginga spectrum. E1615+061 has been observed with IUE in 1990 and in 1992. The source was stable and the colour excess E(B-V) derived from the data = 0.1 is in good agreement with that expected from the galactic absorption.To parameterise the soft excess we fitted the Rosat data with a two-component model consisting of a power law, and a blackbody or thermal bremsstrahlung, with a single galactic absorption term. The column density and the slope of the power law were kept constant. The blackbody temperature was 80 ± 6 eV and 63 ± 12 eV for photon index equal to 1.8 and 2.0, respectively, whereas the bremsstrahlung temperature was 220 ± 40 eV and 115 ± 30 eV for the two cases.An attempt to model the soft excess seen in the Rosat PSPC spectrum has been made assuming that the soft excess is the high energy tail of a disc spectrum which peaks in the UV part of the spectrum. Additionally it was assumed that there is a hard component contributing to the spectrum from UV to X-rays with parameters as described by the Ginga spectrum. The best fit parameters: the mass of the central source and the mass accretion rate were around 5 ± 1 · 10λ6 M⊙ and 0.2 ± 0.04 M⊙/yr, respectively.Our modelling shows that the soft X-ray excess can be described (χredλ2 < 1.2) as the high energy tail of an accretion disk spectrum if the intrinsic power law is quite steep (α = 2). The main contribution to the residuals in the Rosat PSPC range comes from 0.3–0.6 keV, with a tendency for these residuals to increase when the slope gets flatter. The accretion luminosity is ∼ 6.5 · 10λ44 erg/s for the best fit parameters, i.e. about the Eddington luminosity.


2021 ◽  
Vol 923 (2) ◽  
pp. 194
Author(s):  
Alice K. Harding ◽  
Christo Venter ◽  
Constantinos Kalapotharakos

Abstract Air-Cherenkov telescopes have detected pulsations at energies above 50 GeV from a growing number of Fermi pulsars. These include the Crab, Vela, PSR B1706−44, and Geminga, with the first two having pulsed detections above 1 TeV. In some cases, there appears to be very-high-energy (VHE) emission that is an extension of the Fermi spectra to high energies, while in other cases, additional higher-energy spectral components that require a separate emission mechanism may be present. We present results of broadband spectral modeling using global magnetospheric fields and multiple emission mechanisms that include synchro-curvature (SC) and inverse Compton scattered (ICS) radiation from accelerated particles (primaries) and synchrotron self-Compton (SSC) emission from lower-energy pairs. Our models predict three distinct VHE components: SC from primaries whose high-energy tail can extend to 100 GeV, SSC from pairs that can extend to several TeV, and ICS from primary particles accelerated in the current sheet that scatter pair synchrotron radiation, which appears beyond 10 TeV. Our models suggest that H.E.S.S.-II and MAGIC have detected the high-energy tail of the primary SC component that produces the Fermi spectrum in Vela, Geminga, and PSR B1706−44. We argue that the ICS component peaking above 10 TeV from Vela has been seen by H.E.S.S. Detection of this emission component from the Crab and other pulsars is possible with the High Altitude Water Cherenkov Observatory and Cherenkov Telescope Array, and will directly measure the maximum particle energy in pulsars.


2021 ◽  
Author(s):  
Valentina Zharkova ◽  
Qian Xia

&lt;div&gt; &lt;div&gt; &lt;div&gt; &lt;p&gt;We will overview particle motion in 3D Harris-type RCSs without and with magnetic islands using particle-in-cell (PIC) method considering the plasma feedback to electromagnetic fields. We evaluate particle energy gains and pitch angle distributions (PADs) of accelerated particles of both changes in different locations inside current sheets as seen under the different directions by a virtual spacecraft passing through. The RCS parameters are considered comparable to heliosphere and solar wind conditions.&amp;#160;&lt;/p&gt; &lt;p&gt;The energy gains and the PADs of particles are shown to change depending on a topology of magnetic fields. &amp;#160;We report separation of electrons from ions at acceleeration in current sheets with strong guiding fields &amp;#160;and formation of transit and bounced beams from the particles of the same charge. The &amp;#160;transit particles are shown to form &amp;#160;bi-directional energetic electron beams (strahls), while bounced particles are mainly account from driopout fluxes in the heliosphere. In topologies with weak guding field strahls are mainly present inside the magneticislands and located closely above/below the X-nullpoints in the inflow regions. As the guiding field becomes larger, the regions with bi-directional strahls are compressed towards small areas in the exhausts of current sheets. Mono-directional strahls with PADS along 0 or 180 degrees are found quasi-parallel to the magnetic field lines near the X-nullpoint due to the dominant Fermi-type magnetic curvature drift acceleration. Meanwhile, high-energy electrons confined inside magnetic islands create PADs about 90&amp;#9702;.&amp;#160;&lt;/p&gt; &lt;/div&gt; &lt;/div&gt; &lt;/div&gt;


2015 ◽  
Vol 70 (10) ◽  
pp. 875-880
Author(s):  
Mourad Djebli

AbstractThe expansion of an electron-positron plasma is studied based on quantum hydrodynamical equations for two fluids. The quasi-neutral expansion, depicted through the quantum screening distance, is investigated numerically when the annealing processes is very slow. It was found that the pair plasma behaves as a single fluid with a front expansion velocity that depends on the density and degenerate parameters. Faster expansion results from the existence of exchange-correlation potential, which is enhanced in high-density plasma. The present investigation may be useful in understanding the expansion of a dense plasma produced by the interaction between high-energy laser and solid targets.


1997 ◽  
Vol 163 ◽  
pp. 805-806
Author(s):  
R. Staubert ◽  
T. Dörrer ◽  
C. Müller ◽  
P. Friedrich ◽  
H. Brunner

Soft X-ray spectra of many Active Galactic Nuclei (AGN) show structure which suggests excess emission at low energies, mostly below 1 keV. This was confirmed by the ROSAT spectra (0.1–2.4 keV) AGN in our samples which generally have steeper power law spectra than the canonical index of 0.7. The soft excess component may be the high energy tail of the big blue bump which in turn may be due to the integrated emission from an accretion disk around the central black hole.We discuss results of our spectral analysis of two different samples of AGN: 1) QSO/Seyfert-I from the ROSAT All Sky Survey (RASS) and 2) radio-quiet QSO from ROSAT Pointed Observations. The ROSAT data are combined with UV Data from IUE and hard X-ray data from various hard X-ray missions.


2020 ◽  
Vol 497 (4) ◽  
pp. 5318-5325
Author(s):  
N Fraija ◽  
E Aguilar-Ruiz ◽  
A Galván-Gámez

ABSTRACT The detection of a prolonged flaring activity from blazar TXS 0506+056 in temporal and spatial coincidence with the energetic neutrino IceCube-170922A provided evidence about the photohadronic interactions in this source. However, analysis of the archival neutrino and multiwavelength data from the direction of this blazar between 2014 September and 2015 March revealed a ‘neutrino flare’ without observing quasi-simultaneous activity in the gamma-ray bands, posing challenges to established models. Electron–positron (e±) pairs generated from the accretion discs have been amply proposed as a mechanism of bulk acceleration of sub-relativistic and relativistic jets. These pairs annihilate inside the source producing a line around the electron mass, which is blueshifted in the observed frame (on Earth) and redshifted in the frame of the dissipation region of the jet. The redshifted photons in the dissipation region interact with accelerated protons, producing high-energy neutrinos that contribute significantly to the diffuse neutrino flux in the ∼10–20 TeV energy range in connection with gamma-rays from the photopion process, which can be detected by future MeV orbiting satellites. Based on this phenomenological model, we can explain the ‘neutrino flare’ reported in 2014–1015.


1989 ◽  
Vol 134 ◽  
pp. 191-193 ◽  
Author(s):  
P. Barr ◽  
P. Giommi ◽  
A. Pollock ◽  
G. Tagliaferri ◽  
D. Maccagni ◽  
...  

A wide variety of X-ray spectral forms has been reported in BL Lac objects. Concave spectra, i.e. a steep soft X-ray spectrum with a flat high energy tail, have been reported in a few of the brightest BL Lacs (e.g Urry 1986). Conversely, convex spectra (steep hard X-rays, flat soft X-ray spectrum) have also been reported, sometimes in the same objects (Madejski 1985, Barr et al 1988, George et al 1988). The high energy tails have usually been invoked as a signature of synchrotron-self-Compton emission. Two conflicting interpretations of the convex spectra have been made. Urry et al (1986) suggest absorption by a partially ionised medium, probably intrinsic to the BL Lac object, following the identification of an Oxygen absorption trough in the Einstein OGS spectrum of PKS 2155-304 by Canizares and Kruper (1984). Conversely, Barr et al (1988) attribute the hard X-ray steepening to energy loss mechanisms operating on a synchrotron source.


There might be ca. 10 9 stellar-mass black holes - the remnants of massive stars - in our own Galaxy. Unless one is lucky enough to record the gravitational wave pulse signalling their formation, the prospects for detection are remote except for the small fraction th at happen to lie in close binary systems. In such systems, gas captured from the companion star emits X-rays as it swirls inward towards the hole. Cygnus X - 1 has been for some years the best candidate: its mass is estimated as ≥ 6 M ⊙ and the X-rays vary irregularly on timescales th at may be as short as milliseconds. An interesting recent development has been the detection of rapid irregular fluctuations from Circinus XI (Toor 1977), which may be a system similar to Cygnus X - 1. When Cygnus X - 1 is no longer a unique well-studied object, but is established as merely one of a class, it will seem less plausible to advocate ‘ ad hoc ´ models (involving for instance ‘ third bodies ’ in the system) as serious alternative to a black hole interpretation. The current lull in X-ray astronomy should soon end with the results from High Energy Astronomical Observatories 1 and 2.


Sign in / Sign up

Export Citation Format

Share Document