scholarly journals A natural boundary of dark matter haloes revealed around the minimum bias and maximum infall locations

2021 ◽  
Vol 503 (3) ◽  
pp. 4250-4263
Author(s):  
Matthew Fong ◽  
Jiaxin Han

ABSTRACT We explore the boundary of dark matter haloes through their bias and velocity profiles. Using cosmological N-body simulations, we show that the bias profile exhibits a ubiquitous trough that can be interpreted as created by halo accretion that depletes material around the boundary. The inner edge of the active depletion region is marked by the location of the maximum mass inflow rate that separates a growing halo from the draining environment. This inner depletion radius can also be interpreted as the radius enclosing a highly complete population of splashback orbits, and matches the optimal exclusion radius in a halo model of the large-scale structure. The minimum of the bias trough defines a characteristic depletion radius, which is located within the infall region bounded by the inner depletion radius and the turnaround radius, while approaching the turnaround radius in low-mass haloes that have stopped mass accretion. The characteristic depletion radius depends the most on halo mass and environment. It is approximately 2.5 times the virial radius and encloses an average density of ∼40 times the background density of the universe, independent on halo mass but dependent on other halo properties. The inner depletion radius is smaller by 10–20 per cent and encloses an average density of ∼63 times the background density. These radii open a new window for studying the properties of haloes.

1987 ◽  
Vol 124 ◽  
pp. 335-348
Author(s):  
Neta A. Bahcall

The evidence for the existence of very large scale structures, ∼ 100h−1Mpc in size, as derived from the spatial distribution of clusters of galaxies is summarized. Detection of a ∼ 2000 kms−1 elongation in the redshift direction in the distribution of the clusters is also described. Possible causes of the effect are peculiar velocities of clusters on scales of 10–100h−1Mpc and geometrical elongation of superclusters. If the effect is entirely due to the peculiar velocities of clusters, then superclusters have masses of order 1016.5M⊙ and may contain a larger amount of dark matter than previously anticipated.


2019 ◽  
Vol 490 (2) ◽  
pp. 2071-2085 ◽  
Author(s):  
Weiqiang Yang ◽  
Supriya Pan ◽  
Andronikos Paliathanasis ◽  
Subir Ghosh ◽  
Yabo Wu

ABSTRACT Unified cosmological models have received a lot of attention in astrophysics community for explaining both the dark matter and dark energy evolution. The Chaplygin cosmologies, a well-known name in this group have been investigated matched with observations from different sources. Obviously, Chaplygin cosmologies have to obey restrictions in order to be consistent with the observational data. As a consequence, alternative unified models, differing from Chaplygin model, are of special interest. In the present work, we consider a specific example of such a unified cosmological model, that is quantified by only a single parameter μ, that can be considered as a minimal extension of the Λ-cold dark matter cosmology. We investigate its observational boundaries together with an analysis of the universe at large scale. Our study shows that at early time the model behaves like a dust, and as time evolves, it mimics a dark energy fluid depicting a clear transition from the early decelerating phase to the late cosmic accelerating phase. Finally, the model approaches the cosmological constant boundary in an asymptotic manner. We remark that for the present unified model, the estimations of H0 are slightly higher than its local estimation and thus alleviating the H0 tension.


1988 ◽  
Vol 130 ◽  
pp. 259-271
Author(s):  
Carlos S. Frenk

Modern N-body techniques allow the study of galaxy formation in the wider context of the formation of large-scale structure in the Universe. The results of such a study within the cold dark matter cosmogony are described. Dark galactic halos form at relatively recent epochs. Their properties and abundance are similar to those inferred for the halos of real galaxies. Massive halos tend to form preferentially in high density regions and as a result the galaxies that form within them are significantly more clustered than the underlying mass. This natural bias may be strong enough to reconcile the observed clustering of galaxies with the assumption that Ω = 1.


1988 ◽  
Vol 130 ◽  
pp. 293-300
Author(s):  
A.G. Doroshkevich ◽  
A.A. Klypin ◽  
M.U. Khlopov

Processes of the formation and the evolution of the large-scale structure are discussed in the framework of unstable dark matter models. Six numerical models are presented. The projected distribution of simulated galaxies on the sky, wedge diagrams, correlation functions and the mean linear scale of voids are presented. Physical background of the hypothesis of unstable particles and possible observational tests are discussed. The level of the microwave background fluctuations is estimated analytically. Special attention is given to late stage of supercluster evolution and galaxy formation.


2019 ◽  
Vol 28 (13) ◽  
pp. 1941011 ◽  
Author(s):  
K. M. Belotsky ◽  
E. A. Esipova ◽  
A. Kh. Kamaletdinov ◽  
E. S. Shlepkina ◽  
M. L. Solovyov

Here, we briefly review possible indirect effects of dark matter (DM) of the universe. It includes effects in cosmic rays (CR): first of all, the positron excess at [Formula: see text]500[Formula: see text]GeV and possible electron–positron excess at 1–1.5[Formula: see text]TeV. We tell that the main and least model-dependent constraint on such possible interpretation of CR effects goes from gamma-ray background. Even ordinary [Formula: see text] mode of DM decay or annihilation produces prompt photons (FSR) so much that it leads to contradiction with data on cosmic gamma-rays. We present our attempts to possibly avoid gamma-ray constraint. They concern with peculiarities of both space distribution of DM and their physics. The latter involves complications of decay/annihilation modes of DM, modifications of Lagrangian of DM-ordinary matter interaction and inclusion of mode with identical fermions in final state. In this way, no possibilities to suppress were found except, possibly, the mode with identical fermions. While the case of spatial distribution variation allows achieving consistency between different data. Also, we consider stable form of DM which can interact with baryons. We show which constraint such DM candidate can get from the damping effect in plasma during large-scale structure (LSS) formation in comparison with other existing constraints.


Author(s):  
Malcolm S. Longair

Since 1980, our empirical knowledge of the universe has advanced tremendously and precision cosmology has become a reality. These developments have been largely technology-driven, the result of increased computer power, new generations of telescopes for all wavebands, new types of semiconductor detectors, such as CCDs, and major investments by many nations in superb observing facilities. The discipline also benefitted from the influx of experimental and theoretical physicists into the cosmological arena. The accuracy and reliability of the values of the cosmological parameters has improved dramatically, many of them now being known to about 1%. The ΛCDM model provides a remarkable fit to all the observational data, demonstrating that the cosmological constant is non-zero and that the global geometry of the universe is flat. The underlying physics of galaxy and large-scale structure formation has advanced dramatically and demonstrated the key roles played by dark matter and dark energy.


1997 ◽  
Vol 12 (17) ◽  
pp. 1275-1282 ◽  
Author(s):  
M. Kawasaki ◽  
Naoshi Sugiyama ◽  
T. Yanagida

Gauge-mediated supersymmetry breaking models suggest the presence of the light gravitino with mass ~ 1 keV which can be warm dark matter in our universe. We consider large scale structure of the universe in the warm dark matter model and find that the power spectrum of the gravitino dark matter is almost the same as that of a cold dark matter at scales larger than about 1 Mpc. We also study the Ly α absorption systems which are presumed to be galaxies at high redshifts and show that the baryon density in the damped Ly α absorption systems predicted by the gravitino dark matter model is quite consistent with the present observation.


Daedalus ◽  
2014 ◽  
Vol 143 (4) ◽  
pp. 125-133
Author(s):  
David N. Spergel

We seem to live in a simple but strange universe. Our basic cosmological model fits a host of astronomical observations with only five basic parameters: the age of the universe, the density of atoms, the density of matter, the initial “lumpiness” of the universe, and a parameter that describes whether this lumpiness is more pronounced on smaller physical scales. Our observations of the cosmic microwave background fluctuations determine these parameters with uncertainties of only 1 to 2 percent. The same model also provides an excellent fit to the large-scale clustering of galaxies and gas, the properties of galaxy clusters, observations of gravitational lensing, and supernova-based measurements of the Hubble relation. This model implies that we live in a strange universe: atoms make up only 4 percent of the visible universe, dark matter makes up 24 percent, and dark energy – energy associated with empty space – makes up 72 percent.


1995 ◽  
Vol 48 (6) ◽  
pp. 1083 ◽  
Author(s):  
PJ Quinn

N-body models running on supercomputers have been widely used to explore the development of structure in the expanding Universe. Recent results from the COBE satellite have provided a global normalisation of these models which now allows detailed comparisons to be drawn between observations and model predictions. Some predictions of the cold dark matter primordial perturbation spectrum are now shown to be consistent with surveys of galaxy redshifts.


2014 ◽  
Vol 23 (08) ◽  
pp. 1430017 ◽  
Author(s):  
Anastasia Fialkov

Our understanding of astrophysical and cosmological phenomena in recent years has improved enormously, thanks to precision measurements of various cosmic signals such as Cosmic Microwave Background radiation, emission of galaxies and dust, spectral lines attributed to various elements, etc. Despite this, our knowledge at intermediate redshifts (10 < z < 1100) remains fragmentary and incomplete, and as a consequence, various physical processes happening between the epochs of hydrogen recombination and reionization remain still highly unconstrained. Moreover, some important fragments of the theoretical description that are less decisive for the universe today, but that had an important impact at intermediate redshifts, have been omitted in some of the studies concerning the universe at high redshifts. One such neglected phenomenon, which is the central topic of this review, is the fact that after hydrogen recombination the large-scale baryons and dark matter fluctuations had supersonic relative velocities. The relative velocities between dark matter and baryons formally introduce a second-order effect on the standard results and thus have been neglected in the framework of linear theory. However, when properly considered, the velocities yield a nonperturbative contribution to the growth of structures which is then inherited by the majority of cosmic signals coming from redshifts above z ~ 10, and in certain cases may even propagate to various low-redshift observables such as the Baryon Acoustic Oscillations measured from the distribution of galaxies. At higher redshifts, the supersonic velocities have thus strong impact affecting the abundance of M ~ 106 M⊙ halos in an inhomogeneous way, hindering the formation of first stars, leaving traces in the redshifted 21-cm signal of neutral hydrogen, as well as having other important contributions at high redshifts all of which we review in this manuscript.


Sign in / Sign up

Export Citation Format

Share Document