scholarly journals Effects of dust particles charged by inelastic collisions and by photoionization on Alfvén waves in a stellar wind

Author(s):  
L B De Toni ◽  
R Gaelzer

Abstract Using a kinetic description of a homogeneous magnetized dusty plasma with Maxwellian distribution of electrons and protons and dust particles charged by inelastic collisions and by photoionization, we analyse the dispersion relation considering the case where waves and radiation propagate exactly parallel to the ambient magnetic field. The investigation emphasizes the changes that the photoionization process brings to the propagation and damping of the waves in a stellar wind environment, since Alfvén waves are believed to play a significant role in the heating and acceleration processes that take place in the wind. The results show that, in the presence of dust with negative equilibrium electrical charge, the Alfvén mode decouples into the whistler and ion cyclotron modes for all values of wavenumber, but when dust particles acquire neutral or positive values of electrical charge, these modes may couple for certain values of wavenumber. It is also seen that the whistler and ion cyclotron modes present null group velocity in a interval of small wavenumber, and that the maximum value of wavenumber for which the waves are non-propagating is reduced in the presence of the photoionization process. For very small values of wavenumber, the damping rates of the modes could change significantly from very small to very high values if the sign of the dust electrical charge is changed.

2015 ◽  
Vol 24 (12) ◽  
pp. 1544023 ◽  
Author(s):  
C. Sivaram

Attempts to detect gravitational waves is actively in progress with sophisticated devices like LIGO setup across continents. Despite being predicted almost 100 years ago, there has so far been no direct detection of these waves. In this work, we draw attention to some of the less discussed but subtle aspects arising, for example, from high orbital eccentricities, where emission near periastron could be millions of times more than that in the distant parts of the orbit. The strong field nonlinear effects close to the compact objects can substantially slow down and deflect the waves in the last (few) orbit(s) where much of the intensity is expected. Spin–orbit and other forces could be significant. There would also be plasma like resonant absorption (of kilohertz radiation) during the collapse. Recent observation of supermassive black holes at high redshift implies cluster collapse, where the gravitational wave intensity depends on very high powers of the mass. Any unambiguous claim of detection should perhaps consider several of these effects.


2020 ◽  
Vol 20 (6) ◽  
pp. 3895-3904
Author(s):  
Gary Lloyd ◽  
Thomas Choularton ◽  
Keith Bower ◽  
Jonathan Crosier ◽  
Martin Gallagher ◽  
...  

Abstract. In this paper we show that the origin of the ice phase in tropical cumulus clouds over the sea may occur by primary ice nucleation of small crystals at temperatures just between 0 and −5 ∘C. This was made possible through use of a holographic instrument able to image cloud particles at very high resolution and small size (6 µm). The environment in which the observations were conducted was notable for the presence of desert dust advected over the ocean from the Sahara. However, there is no laboratory evidence to suggest that these dust particles can act as ice nuclei at temperatures warmer than about −10 ∘C, the zone in which the first ice was observed in these clouds. The small ice particles were observed to grow rapidly by vapour diffusion, riming, and possibly through collisions with supercooled raindrops, causing these to freeze and potentially shatter. This in turn leads to the further production of secondary ice in these clouds. Hence, although the numbers of primary ice particles are small, they are very effective in initiating the rapid glaciation of the cloud, altering the dynamics and precipitation production processes.


2005 ◽  
Vol 23 (3) ◽  
pp. 983-995 ◽  
Author(s):  
D. Sundkvist ◽  
A. Vaivads ◽  
M. André ◽  
J.-E. Wahlund ◽  
Y. Hobara ◽  
...  

Abstract. We present a detailed study of waves with frequencies near the proton gyrofrequency in the high-altitude cusp for northward IMF as observed by the Cluster spacecraft. Waves in this regime can be important for energization of ions and electrons and for energy transfer between different plasma populations. These waves are present in the entire cusp with the highest amplitudes being associated with localized regions of downward precipitating ions, most probably originating from the reconnection site at the magnetopause. The Poynting flux carried by these waves is downward/upward at frequencies below/above the proton gyrofrequency, which is consistent with the waves being generated near the local proton gyrofrequency in an extended region along the flux tube. We suggest that the waves can be generated by the precipitating ions that show shell-like distributions. There is no clear polarization of the perpendicular wave components with respect to the background magnetic field, while the waves are polarized in a parallel-perpendicular plane. The coherence length is of the order of one ion-gyroradius in the direction perpendicular to the ambient magnetic field and a few times larger or more in the parallel direction. The perpendicular phase velocity was found to be of the order of 100km/s, an order of magnitude lower than the local Alfvén speed. The perpendicular wavelength is of the order of a few proton gyroradius or less. Based on our multi-spacecraft observations we conclude that the waves cannot be ion-whistlers, while we suggest that the waves can belong to the kinetic Alfvén branch below the proton gyrofrequency fcp and be described as non-potential ion-cyclotron waves (electromagnetic ion-Bernstein waves) above. Linear wave growth calculations using kinetic code show considerable wave growth of non-potential ion cyclotron waves at wavelengths agreeing with observations. Inhomogeneities in the plasma on the order of the ion-gyroradius suggests that inhomogeneous (drift) or nonlinear effects or both of these should be taken into account.


2000 ◽  
Vol 7 (3/4) ◽  
pp. 173-177
Author(s):  
M. Cremer ◽  
M. Scholer

Abstract. We have investigated the nonlinear properties of the electromagnetic ion/ion cyclotron instability (EMIIC) by means of hybrid simulations (macroparticle ions, massless electron fluid). The instability is driven by the relative (super-Alfvénic) streaming of two field-aligned ion beams in a low beta plasma (ion thermal pressure to magnetic field pressure) and may be of importance in the plasma sheet boundary layer. As shown in previously reported simulations the waves propagate obliquely to the magnetic field and heat the ions in the perpendicular direction as the relative beam velocity decreases. By running the simulation to large times it can be shown that the large temperature anisotropy leads to the ion cyclotron instability (IC) with parallel propagating Alfvén ion cyclotron waves. This is confirmed by numerically solving the electromagnetic dispersion relation. An application of this property to the plasma sheet boundary layer is discussed.


2012 ◽  
Vol 50 (No. 1) ◽  
pp. 23-27
Author(s):  
J. Fryč ◽  
R. Kukla ◽  
J. Los

Comparison measurements and evaluation of the suitability of three pulsators for sheep milking machines were carried out, i.e. a prototype made by the manufacturer of the milking parlour of the pulsator ratio 50% (50:50) and two hydraulic pulsators of the Danish manufacturer S.A. Christensen (SAC), models Unipuls-2 of the pulsator ratios 50% (50:50) and 60% (60:40). The specified pulsation rate was 2.5/s(150/min). It was found that the pulsator prototype made by the milking parlour manufacturer slowly passed air, whereby the vacuum in pulsation chambers did not attain the maximum value. Fig. 2 illustrates the operation of this pulsator. Both SAC pulsators had better parameters and their pulsograms are plotted in Figs. 3 and 4. Also the measurements of a liner deformation in dependence on the vacuum in the teatcup pulsation chamber were made based on which the moment of a real liner opening, i.e. at the vacuum of 35 kPa was determined. The results obtained by the experiments carried out can be summed up as follows: As the change in pulsation rate does not affect the time of transition phases “a” and “c”, the intervals “b” and “d” are shorter if the pulsation rate is increased. Interval “b”, i.e. a full liner opening, shortens with the rising rate and extends with the increased value of the pulsator ratio. For this reason higher pulsator ratios should be used at very high pulsation rates. The teatcup operation depends on the physical-mechanical properties of the liner used. On the milking unit measured considerable differences in time take place between the interval “b” and the liner full opening due to a relatively high resistance power of the liner to deformation. The pulsator prototype designed by the milking parlour producer revealed as fully unsuitable based on its pulsogram. As far as the time of the liner opening is concerned, its parameters were worse than on both SAC pulsators, however, we cannot indicate it as unsuitable.


1995 ◽  
Vol 53 (3) ◽  
pp. 317-334 ◽  
Author(s):  
N. N. Rao

The existence of various types of (fast) magnetoacoustic modes in different frequency regimes in a magnetized dusty plasma consisting of electrons, ions and dust particles is investigated. The analysis is carried out using an effective two-fluid MHD-like model which allows for the non-frozen motion of the component fluids. For frequencies much smaller than the dust particle gyro- frequency, we obtain a magnetoacoustic mode that is a generalization of the usual compressional fast hydromagnetic wave in an electron—ion plasma. In the higher-frequency regimes, we show the existence of two new types of modes called ‘Dust-magnetoacoustic waves’. Both modes are accompanied by compressional magnetic field and plasma number density perturbations, and are the electromagnetic generalizations of the dust-acoustic waves in an unmagnetized dusty plasma with thermal electrons and ions. For a two- component plasma, all three modes degenerate into the same fast magneto- acoustic wave found in the usual electron—ion plasmas. We also obtain another novel type of magneto-acoustic mode called a ‘dust—ion-magneto- acoustic wave’, which is an electromagnetic generalization of the dust—ion- acoustic wave. The dispersion relations as well as the frequency regimes for the existence of the various modes are explicitly obtained. An alternative derivation of the relevant governing equations using an approach similar to that employed in so-called ‘electron magnetohydrodynamics’ (EMHD) is also presented.


1951 ◽  
Vol 29 (3) ◽  
pp. 243-252 ◽  
Author(s):  
W. G. Schneider

The velocity and absorption of ultrasound (600 kc.) has been measured throughout the critical temperature region of sulphur hexafluoride. Measurements were carried out for the coexisting liquid phase and vapor phase below Tc, and for the supercritical gas, and simultaneously, observations of the meniscus behavior in the neighborhood of Tc were made. The sound velocity for both liquid and vapor phases below Tc decreased with increasing temperature and became equal at Tc, the velocity at this point being 121.5 m. per sec. In the temperature range from 0.6° below Tc to Tc the velocity in the vapor was greater than that in the liquid. A very high absorption of sound was observed, having a maximum value at Tc and extending over a temperature range of approximately 1°. In the temperature range from Tc to 0.6° below Tc, the absorption in the liquid phase was greater than that in the vapour.


Sign in / Sign up

Export Citation Format

Share Document