scholarly journals Improved hydrodynamic pulsation models for the pulsating extreme helium star V652 Herculis

Author(s):  
C Simon Jeffery ◽  
Pilar Montañés-Rodríguez ◽  
Hideyuki Saio

Abstract New non-linear hydrodynamic models have been constructed to simulate the radial pulsations observed in the extreme helium star V652 Her. These use a finer zoning to allow higher radial resolution than in previous simulations. Models incorporate updated OPAL and OP opacity tables and adopt a composition based on the best atmospheric analyses to date. Key pulsation properties including period, velocity amplitude and shock acceleration are examined as a function of the mean stellar parameters (mass, luminosity, and effective temperature). The new models confirm that, for large amplitude pulsations, a strong shock develops at minimum radius, and is associated with a large phase delay between maximum brightness and minimum radius. Using the observed pulsation period to constrain parameter space in one dimension, other pulsation properties are used to constrain the model space further, and to critically discuss observational measurements. Similar models may be useful for the interpretation of other blue large amplitude pulsators, which may also exhibit pulsation-driven shocks.

2019 ◽  
Vol 622 ◽  
pp. A203 ◽  
Author(s):  
P. Mertsch ◽  
V. Petrosian

The discovery of the Fermi bubbles – a huge bilobular structure seen in GeV gamma-rays above and below the Galactic centre – implies the presence of a large reservoir of high energy particles at ~10 kpc from the disk. The absence of evidence for a strong shock coinciding with the edge of the bubbles, and constraints from multi-wavelength observations point towards stochastic acceleration by turbulence as a likely mechanism of acceleration. We have investigated the time-dependent acceleration of electrons in a large-scale outflow from the Galactic centre. For the first time, we present a detailed numerical solution of the particle kinetic equation that includes the acceleration, transport and relevant energy loss processes. We also take into account the addition of shock acceleration of electrons at the bubble’s blast wave. Fitting to the observed spectrum and surface brightness distribution of the bubbles allows determining the transport coefficients, thereby shedding light on the origin of the Fermi bubbles.


1985 ◽  
Vol 87 ◽  
pp. 109-115
Author(s):  
P.W. Hill ◽  
C.S. Jeffery

AbstractNew radial velocity data for the pulsating extreme helium star V652 Her (BD+13°3224) have been obtained with a time resolution of 100 s. High frequency structure in the radial velocity curve is detected, and a comparison with previous data suggests that the detailed shape of the velocity curve is variable. The data imply that the effective surface gravity must increase by a factor of 4 at minimum radius.


2004 ◽  
Vol 190 ◽  
pp. 187-200 ◽  
Author(s):  
K. Beuermann

AbstractThe structure of the near-polar accretion spots on accreting magnetic white dwarfs has been studied theoretically and observationally in numerous papers over the last decade. Detailed treatments are available for the regime of low mass flux, usually termed the bombardment case, and for higher mass fluxes which create a strong shock standing above the photosphere of the white dwarf. No general treatment is so far available for the case of shocks buried deep in the photosphere. I review the theoretical foundations, present some applications of theory, and discuss in short the open questions which still need to be addressed.


1972 ◽  
Vol 54 (2) ◽  
pp. 297-304 ◽  
Author(s):  
D. A. Freiwald

The acceleration of a shock wave in an ideal gas of decreasing density has previously been studied. The problem is reconsidered here with empirical inclusion of real-gas effects for strong shocks in hydrogen. Experimental results suggest that previous shock acceleration models are valid only for a limited range of the Knudsen number in finite geometries and that for large final-state Knudsen numbers a free-expansion model best describes the experimental results.


2020 ◽  
Vol 636 ◽  
pp. A92
Author(s):  
A. L. Müller ◽  
G. E. Romero

Context. Active galactic nuclei are supermassive black holes surrounded by an accretion disk, two populations of clouds, bipolar jets, and a dusty torus. The clouds move in Keplerian orbits at high velocities. In particular, the broad-line region (BLR) clouds have velocities ranging from 1000 to 10 000 km s−1. Given the extreme proximity of these clouds to the supermassive black hole, frequent collisions with the accretion disk should occur. Aims. The impact of BLR clouds onto the accretion disk can produce strong shock waves where particles might be accelerated. The goal of this work is to investigate the production of relativistic particles, and the associated non-thermal radiation in these events. In particular, we apply the model we develop to the Seyfert galaxy NGC 1068. Methods. We analyze the efficiency of diffusive shock acceleration in the shock of colliding clouds of the BLR with the accretion disk. We calculate the spectral energy distribution of photons generated by the relativistic particles and estimate the number of simultaneous impacts needed to explain the gamma radiation observed by Fermi in Seyfert galaxies. Results. We find that is possible to understand the measured gamma emission in terms of the interaction of clouds with the disk if the hard X-ray emission of the source is at least obscured between 20% and 40%. The total number of clouds contained in the BLR region might be between 3 × 108 and 6 × 108, which are values in good agreement with the observational evidence. The maximum energy achieved by the protons (∼PeV) in this context allows the production of neutrinos in the observing range of IceCube.


1993 ◽  
Vol 10 (3) ◽  
pp. 222-224 ◽  
Author(s):  
D.B. Melrose ◽  
M.H. Pope

AbstractDiffusive shock acceleration produces a power law momentum distribution f(p)α p−b, with b ≥ 4 for a single shock, and b = 4 for a single strong shock. It has been shown that the distribution for acceleration at a sequence of identical shocks is flatter, approaching f(p)α p−3 below a high energy knee, for an arbitrarily large number of shocks. We show how this flatter distribution arises and discuss the range of momenta over which it extends after a finite number of shocks.


2009 ◽  
Vol 76 (3-4) ◽  
pp. 267-275 ◽  
Author(s):  
GAIMIN LU ◽  
YUE LIU ◽  
YOUMEI WANG ◽  
L. STENFLO ◽  
S. I. POPEL ◽  
...  

AbstractFully nonlinear electrostatic waves in a plasma containing electrons, positrons, and ions are investigated by solving the governing equations exactly. It is found that both smooth and spiky quasistationary waves exist, and large-amplitude waves necessarily have large-phase velocities, but small-amplitude waves can be both fast and slow.


Author(s):  
Donald V. Reames

AbstractHow well do protons fit into the abundance patterns of the other elements? Protons have Q = 1 and A/Q = 1 at all temperatures of interest. When does their relative abundance fit on the power law in A/Q defined by the elements with A/Q > 2? For small “pure” impulsive events, protons fit well, but for larger CME-associated impulsive events, where shock waves boost the intensities, protons are enhanced a factor of order ten by addition of seed protons from the ambient plasma. During most large gradual SEP events with strong shock waves, protons again fit the power law, but with weaker or quasi-perpendicular shock waves, dominated by residual impulsive seed particle abundances at high Z, again protons are enhanced. Proton enhancements occur when moderately weak shock waves happen to sample a two-component seed population with dominant protons from the ambient coronal plasma and impulsive suprathermal ions at high Z; thus proton-enhanced events are a surprising new signature of shock acceleration in jets. A/Q measures the rigidity dependence of both acceleration and transport but does not help us distinguish the two. Energy-spectral indices and abundances are correlated for most gradual events but not when impulsive ions are present; thus we end with powerful new correlations that probe both acceleration and transport.


2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Minh Chau Nguyen ◽  
Hassan Peerhossaini ◽  
Elnaz Pashmi ◽  
Mohammad Mehdi Salek ◽  
Mojtaba Jarrahi

Abstract While a variety of active and passive techniques have been proposed for steady flows, pulsatile flow has received much less attention. Pulsation makes more control parameters available for passive methods and enables them to separate particles. The purpose of this work is to determine the effects of the phase shift between two entering flows (only one includes the particles) on particle separation inside a double Y-microchannel. Numerical simulations were carried out for both steady and pulsating flow conditions. The results showed that when the velocity amplitude ratio (β) is less than 2, the separation index increases with the phase shift (φ) and the highest efficiency occurs at φ = 180 deg. A similar trend can be observed for higher values of β only if the pulsation period is short enough. A series of experiments qualitatively validated the numerical results.


1999 ◽  
Vol 170 ◽  
pp. 211-217 ◽  
Author(s):  
L. Szabados

AbstractIn view of the high incidence of duplicity among Cepheids, a large number of binary systems remain to be discovered because of the low amplitude of the orbital effect superimposed on the radial velocity variation due to radial pulsation. This fact is shown by simple statistics. The importance of combining astrometric data with radial velocity measurements is also emphasized. Finally the systematics of the radial velocity amplitude as a function of the pulsation period is considered for classical Cepheids.


Sign in / Sign up

Export Citation Format

Share Document