scholarly journals The evolution of sizes and specific angular momenta in hierarchical models of galaxy formation and evolution

2019 ◽  
Vol 487 (4) ◽  
pp. 5649-5665 ◽  
Author(s):  
Anna Zoldan ◽  
Gabriella De Lucia ◽  
Lizhi Xie ◽  
Fabio Fontanot ◽  
Michaela Hirschmann

ABSTRACTWe extend our previous work focused at z ∼ 0, studying the redshift evolution of galaxy dynamical properties using the state-of-the-art semi-analytic model GAEA (GAlaxy Evolution and Assembly): we show that the predicted size–mass relation for discy/star-forming and quiescent galaxies is in good agreement with observational estimates, up to z ∼ 2. Bulge-dominated galaxies have sizes that are offset low with respect to observational estimates, mainly due to our implementation of disc instability at high redshift. At large masses, both quiescent and bulge-dominated galaxies have sizes smaller than observed. We interpret this as a consequence of our most massive galaxies having larger gas masses than observed, and therefore being more affected by dissipation. We argue that a proper treatment of quasar-driven winds is needed to alleviate this problem. Our model compact galaxies have number densities in agreement with observational estimates and they form most of their stars in small and low angular momentum high-z haloes. GAEA predicts that a significant fraction of compact galaxies forming at high-z is bound to merge with larger structures at lower redshifts: therefore they are not the progenitors of normal-size passive galaxies at z = 0. Our model also predicts a stellar–halo size relation that is in good agreement with observational estimates. The ratio between stellar size and halo size is proportional to the halo spin and does not depend on stellar mass but for the most massive galaxies, where active galactic nucleus feedback leads to a significant decrease of the retention factor (from about 80 per cent to 20 per cent).

2020 ◽  
Vol 15 (S359) ◽  
pp. 136-140
Author(s):  
Minju M. Lee ◽  
Ichi Tanaka ◽  
Rohei Kawabe

AbstractWe present studies of a protocluster at z =2.5, an overdense region found close to a radio galaxy, 4C 23.56, using ALMA. We observed 1.1 mm continuum, two CO lines (CO (4–3) and CO (3–2)) and the lower atomic carbon line transition ([CI](3P1-3P0)) at a few kpc (0″.3-0″.9) resolution. The primary targets are 25 star-forming galaxies selected as Hα emitters (HAEs) that are identified with a narrow band filter. These are massive galaxies with stellar masses of > 1010Mʘ that are mostly on the galaxy main sequence at z =2.5. We measure the molecular gas mass from the independent gas tracers of 1.1 mm, CO (3–2) and [CI], and investigate the gas kinematics of galaxies from CO (4–3). Molecular gas masses from the different measurements are consistent with each other for detection, with a gas fraction (fgas = Mgas/(Mgas+ Mstar)) of ≃ 0.5 on average but with a caveat. On the other hand, the CO line widths of the protocluster galaxies are typically broader by ˜50% compared to field galaxies, which can be attributed to more frequent, unresolved gas-rich mergers and/or smaller sizes than field galaxies, supported by our high-resolution images and a kinematic model fit of one of the galaxies. We discuss the expected scenario of galaxy evolution in protoclusters at high redshift but future large surveys are needed to get a more general view.


2020 ◽  
Vol 500 (3) ◽  
pp. 3394-3412
Author(s):  
Steven R Furlanetto

ABSTRACT In recent years, simple models of galaxy formation have been shown to provide reasonably good matches to available data on high-redshift luminosity functions. However, these prescriptions are primarily phenomenological, with only crude connections to the physics of galaxy evolution. Here, we introduce a set of galaxy models that are based on a simple physical framework but incorporate more sophisticated models of feedback, star formation, and other processes. We apply these models to the high-redshift regime, showing that most of the generic predictions of the simplest models remain valid. In particular, the stellar mass–halo mass relation depends almost entirely on the physics of feedback (and is thus independent of the details of small-scale star formation) and the specific star formation rate is a simple multiple of the cosmological accretion rate. We also show that, in contrast, the galaxy’s gas mass is sensitive to the physics of star formation, although the inclusion of feedback-driven star formation laws significantly changes the naive expectations. While these models are far from detailed enough to describe every aspect of galaxy formation, they inform our understanding of galaxy formation by illustrating several generic aspects of that process, and they provide a physically grounded basis for extrapolating predictions to faint galaxies and high redshifts currently out of reach of observations. If observations show violations from these simple trends, they would indicate new physics occurring inside the earliest generations of galaxies.


2019 ◽  
Vol 488 (2) ◽  
pp. 1941-1959 ◽  
Author(s):  
Madeline A Marshall ◽  
Simon J Mutch ◽  
Yuxiang Qin ◽  
Gregory B Poole ◽  
J Stuart B Wyithe

Abstract We study the sizes, angular momenta, and morphologies of high-redshift galaxies, using an update of the meraxes semi-analytic galaxy evolution model. Our model successfully reproduces a range of observations from redshifts z = 0–10. We find that the effective radius of a galaxy disc scales with ultraviolet (UV) luminosity as $R_\mathrm{ e}\propto L_{\textrm{UV}}^{0.33}$ at z = 5–10, and with stellar mass as $R_e\propto M_\ast ^{0.24}$ at z = 5 but with a slope that increases at higher redshifts. Our model predicts that the median galaxy size scales with redshift as Re ∝ (1 + z)−m, where m = 1.98 ± 0.07 for galaxies with (0.3–1)$L^\ast _{z=3}$ and m = 2.15 ± 0.05 for galaxies with (0.12–0.3)$L^\ast _{z=3}$. We find that the ratio between stellar and halo specific angular momentum is typically less than 1 and decreases with halo and stellar mass. This relation shows no redshift dependence, while the relation between specific angular momentum and stellar mass decreases by ∼0.5 dex from z = 7 to z = 2. Our model reproduces the distribution of local galaxy morphologies, with bulges formed predominantly through galaxy mergers for low-mass galaxies, disc-instabilities for galaxies with M* ≃ 1010–$10^{11.5}\, \mathrm{M}_\odot$, and major mergers for the most massive galaxies. At high redshifts, we find galaxy morphologies that are predominantly bulge-dominated.


1994 ◽  
Vol 161 ◽  
pp. 649-651
Author(s):  
K. Rakos ◽  
J. Schombert ◽  
T. Maindl ◽  
N. Unger ◽  
P. Obitsch

Rest-frame Strömgren colours are presented for a large number of galaxies in rich clusters between z = 0 and z = 1. Our observations confirm a strong, rest-frame, Butcher-Oemler effect where the fraction of blue galaxies increases from 20% at z < 0.4 to 80% at z = 0.9. After isolating the red objects in each cluster we have compared the mean colour of these old, non-star forming objects with SED models from the literature as a test for passive galaxy evolution in ellipticals. We find good agreement with single burst models which predict an epoch of galaxy formation from z = 2 to 5 (Rakos et al. 1988, 1991; Rakos & Schombert 1993). Although the results demonstrate a great deal of hope for modelling the fine details of colour evolution when our samples are extended into the near- and far-IR, there are reasons to believe that galaxies become, observationally, much more complicated beyond redshifts of 1. The rate of blue colour evolution between 0.6 and 0.9 suggests that by a redshift of 1.5 it will be impossible to tell the difference between galaxies which have completed a single burst at a formation redshift of 2 or ones which are undergoing constant star formation.


2012 ◽  
Vol 10 (H16) ◽  
pp. 377-377
Author(s):  
V. Strazzullo

AbstractThe X-ray luminous system XMMU J2235-2557 at z~1.4 is among the most massive of the very distant galaxy clusters, and remains a unique laboratory to observe environment-biased galaxy evolution already 9 Gyr ago (Lidman et al.2008, Rosati et al.2009, Strazzullo et al.2010). At a cosmic time when cluster cores start showing evidence of a still active galaxy population, star-forming (M>1010M⊙) galaxies in XMMU J2235-2557 are typically located beyond ~250kpc from the cluster center, with the cluster core already effectively quenched and dominated by massive galaxies on a tight red sequence, showing early-type spectral features and bulge-dominated morphologies. While masses and stellar populations of these red-sequence galaxies suggest that they have largely completed their formation, their size is found to be typically smaller that similarly massive early-type galaxies in the local Universe, in agreement with many high-redshift studies. This would leave room for later evolution, likely through non-secular processes, changing their structure to match their local counterparts. On the other hand, uncertainties and biases in the determination of masses and sizes, as well as in the local mass-size relation, and the possible effect of progenitor bias, still hamper a final conclusion on the actual relevance of size evolution for early-type galaxies in this dense high-redshift environment.


2019 ◽  
Vol 489 (1) ◽  
pp. 224-240 ◽  
Author(s):  
V Patrício ◽  
J Richard ◽  
D Carton ◽  
C Péroux ◽  
T Contini ◽  
...  

ABSTRACT The existence of a spatially resolved star-forming main sequence (rSFMS) and a spatially resolved mass–metallicity relation (rMZR) is now well established for local galaxies. Moreover, gradients with metallicity decreasing with radius seem to be common in local disc galaxies. These observations suggest that galaxy formation is a self-regulating process, and provide constraints for galaxy evolution models. Studying the evolution of these relations at higher redshifts is still, however, very challenging. In this paper, we analyse three gravitationally lensed galaxies at z = 0.6, 0.7, and 1, observed with MUSE and SINFONI. These galaxies are highly magnified by galaxy clusters, which allow us to observe resolved scaling relations and metallicity gradients on physical scales of a couple of hundred parsecs, comparable to studies of local galaxies. We confirm that the rSFMS is already in place at these redshifts on sub-kpc scales, and establish, for the first time, the existence of the rMZR at higher redshifts. We develop a forward-modelling approach to fit 2D metallicity gradients of multiply imaged lensed galaxies in the image plane, and derive gradients of −0.027 ± 0.003, −0.019 ± 0.003, and −0.039 ± 0.060 dex kpc−1. Despite the fact that these are clumpy galaxies, typical of high-redshift discs, the metallicity variations in the galaxies are well described by global linear gradients, and we do not see any difference in metallicity associated with the star-forming clumps.


2020 ◽  
Vol 493 (1) ◽  
pp. 1178-1196 ◽  
Author(s):  
Ryan Endsley ◽  
Peter Behroozi ◽  
Daniel P Stark ◽  
Christina C Williams ◽  
Brant E Robertson ◽  
...  

ABSTRACT Galaxy clustering measurements can be used to constrain many aspects of galaxy evolution, including galaxy host halo masses, satellite quenching efficiencies, and merger rates. We simulate JWST galaxy clustering measurements at z ∼ 4–10 by utilizing mock galaxy samples produced by an empirical model, the universemachine. We also adopt the survey footprints and typical depths of the planned joint NIRCam and NIRSpec Guaranteed Time Observation program planned for Cycle 1 to generate realistic JWST survey realizations and to model high-redshift galaxy selection completeness. We find that galaxy clustering will be measured with ≳5σ significance at z ∼ 4–10. Halo mass precisions resulting from Cycle 1 angular clustering measurements will be ∼0.2 dex for faint (−18 ≳ $\mathit {M}_{\mathrm{UV}}^{ }$ ≳ −19) galaxies at z ∼ 4–10 as well as ∼0.3 dex for bright ($\mathit {M}_{\mathrm{UV}}^{ }$ ∼ −20) galaxies at z ∼ 4–7. Dedicated spectroscopic follow-up over ∼150 arcmin2 would improve these precisions by ∼0.1 dex by removing chance projections and low-redshift contaminants. Future JWST observations will therefore provide the first constraints on the stellar–halo mass relation in the epoch of reionization and substantially clarify how this relation evolves at z > 4. We also find that ∼1000 individual satellites will be identifiable at z ∼ 4–8 with JWST, enabling strong tests of satellite quenching evolution beyond currently available data (z ≲ 2). Finally, we find that JWST observations can measure the evolution of galaxy major merger pair fractions at z ∼ 4–8 with ∼0.1–0.2 dex uncertainties. Such measurements would help determine the relative role of mergers to the build-up of stellar mass into the epoch of reionization.


Author(s):  
Joseph A O’Leary ◽  
Benjamin P Moster ◽  
Thorsten Naab ◽  
Rachel S Somerville

Abstract We explore the galaxy-galaxy merger rate with the empirical model for galaxy formation, emerge. On average, we find that between 2 per cent and 20 per cent of massive galaxies (log10(m*/M⊙) ≥ 10.3) will experience a major merger per Gyr. Our model predicts galaxy merger rates that do not scale as a power-law with redshift when selected by descendant stellar mass, and exhibit a clear stellar mass and mass-ratio dependence. Specifically, major mergers are more frequent at high masses and at low redshift. We show mergers are significant for the stellar mass growth of galaxies log10(m*/M⊙) ≳ 11.0. For the most massive galaxies major mergers dominate the accreted mass fraction, contributing as much as 90 per cent of the total accreted stellar mass. We reinforce that these phenomena are a direct result of the stellar-to-halo mass relation, which results in massive galaxies having a higher likelihood of experiencing major mergers than low mass galaxies. Our model produces a galaxy pair fraction consistent with recent observations, exhibiting a form best described by a power-law exponential function. Translating these pair fractions into merger rates results in an inaccurate prediction compared to the model intrinsic values when using published observation timescales. We find the pair fraction can be well mapped to the intrinsic merger rate by adopting an observation timescale that decreases linearly with redshift as Tobs = −0.36(1 + z) + 2.39 [Gyr], assuming all observed pairs merge by z = 0.


2020 ◽  
Vol 501 (2) ◽  
pp. 1591-1602
Author(s):  
T Parsotan ◽  
R K Cochrane ◽  
C C Hayward ◽  
D Anglés-Alcázar ◽  
R Feldmann ◽  
...  

ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt  dust radiative transfer code to generate synthetic observations of massive galaxies ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$ at z = 2, hosted by haloes of mass $M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $1\, \rm {kpc}$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values. We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2.


2020 ◽  
Vol 500 (2) ◽  
pp. 2127-2145
Author(s):  
Christopher C Lovell ◽  
Aswin P Vijayan ◽  
Peter A Thomas ◽  
Stephen M Wilkins ◽  
David J Barnes ◽  
...  

ABSTRACT We introduce the First Light And Reionisation Epoch Simulations (FLARES), a suite of zoom simulations using the EAGLE model. We resimulate a range of overdensities during the Epoch of Reionization (EoR) in order to build composite distribution functions, as well as explore the environmental dependence of galaxy formation and evolution during this critical period of galaxy assembly. The regions are selected from a large $(3.2 \, \mathrm{cGpc})^{3}$ parent volume, based on their overdensity within a sphere of radius 14 h−1 cMpc. We then resimulate with full hydrodynamics, and employ a novel weighting scheme that allows the construction of composite distribution functions that are representative of the full parent volume. This significantly extends the dynamic range compared to smaller volume periodic simulations. We present an analysis of the galaxy stellar mass function (GSMF), the star formation rate distribution function (SFRF), and the star-forming sequence (SFS) predicted by FLARES, and compare to a number of observational and model constraints. We also analyse the environmental dependence over an unprecedented range of overdensity. Both the GSMF and the SFRF exhibit a clear double-Schechter form, up to the highest redshifts (z = 10). We also find no environmental dependence of the SFS normalization. The increased dynamic range probed by FLARES will allow us to make predictions for a number of large area surveys that will probe the EoR in coming years, carried out on new observatories such as Roman and Euclid.


Sign in / Sign up

Export Citation Format

Share Document