scholarly journals Biases in retrieving planetary signals in the presence of quasi-periodic stellar activity

2019 ◽  
Vol 489 (2) ◽  
pp. 2555-2571 ◽  
Author(s):  
M Damasso ◽  
M Pinamonti ◽  
G Scandariato ◽  
A Sozzetti

Abstract Gaussian process regression is a widespread tool used to mitigate stellar correlated noise in radial velocity (RV) time series. It is particularly useful to search for and determine the properties of signals induced by small-sized low-mass planets (Rp < 4 R⊕, mp < 10 M⊕). By using extensive simulations based on a quasi-periodic representation of the stellar activity component, we investigate the ability in retrieving the planetary parameters in 16 different realistic scenarios. We analyse systems composed by one planet and host stars having different levels of activity, focusing on the challenging case represented by low-mass planets, with Doppler semi-amplitudes in the range 1–3 $\rm{\,m\,s^{-1}}$. We consider many different configurations for the quasi-periodic stellar activity component, as well as different combinations of the observing epochs. We use commonly employed analysis tools to search for and characterize the planetary signals in the data sets. The goal of our injection-recovery statistical analysis is twofold. First, we focus on the problem of planet mass determination. Then, we analyse in a statistical way periodograms obtained with three different algorithms, in order to explore some of their general properties, as the completeness and reliability in retrieving the injected planetary and stellar activity signals with low false alarm probabilities. This work is intended to provide some understanding of the biases introduced in the planet parameters inferred from the analysis of RV time series that contain correlated signals due to stellar activity. It also aims to motivate the use and encourage the improvement of extensive simulations for planning spectroscopic follow-up observations.

2010 ◽  
Vol 6 (S273) ◽  
pp. 281-285 ◽  
Author(s):  
Isabelle Boisse ◽  
François Bouchy ◽  
Guillaume Hébrard ◽  
Xavier Bonfils ◽  
Nuno Santos ◽  
...  

AbstractPhotospheric stellar activity (i.e. dark spots or bright plages) might be an important source of noise and confusion in the radial-velocity (RV) measurements. Radial-velocimetry planet search surveys as well as follow-up of photometric transit surveys require a deeper understanding and characterization of the effects of stellar activities to disentangle it from planetary signals.We simulate dark spots on a rotating stellar photosphere. The variations of the RV are characterized and analyzed according to the stellar inclination, the latitude and the number of spots. The Lomb-Scargle periodograms of the RV variations induced by activity present power at the rotational period Prot of the star and its two-first harmonics Prot/2 and Prot/3. Three adjusted sinusoids fixed at the fundamental period and its two-first harmonics allow to remove about 90% of the RV jitter amplitude. We apply and validate our approach on four known active planet-host stars: HD 189733, GJ 674, CoRoT-7 and ι Hor. We succeed in fitting simultaneously activity and planetary signals on GJ674 and CoRoT-7. We excluded short-period low-mass exoplanets around ι Hor. Our approach is efficient to disentangle reflex-motion due to a planetary companion and stellar-activity induced-RV variations provided that 1) the planetary orbital period is not close to that of the stellar rotation or one of its two-first harmonics, 2) the rotational period of the star is accurately known, 3) the data cover more than one stellar rotational period.


2018 ◽  
Vol 617 ◽  
pp. A6 ◽  
Author(s):  
K. J. Bell ◽  
I. Pelisoli ◽  
S. O. Kepler ◽  
W. R. Brown ◽  
D. E. Winget ◽  
...  

Context. The nature of the recently identified “sdA” spectroscopic class of stars is not well understood. The thousands of known sdAs have H-dominated spectra, spectroscopic surface gravity values between main sequence stars and isolated white dwarfs, and effective temperatures below the lower limit for He-burning subdwarfs. Most are likely products of binary stellar evolution, whether extremely low-mass white dwarfs and their precursors or blue stragglers in the halo. Aims. Stellar eigenfrequencies revealed through time series photometry of pulsating stars sensitively probe stellar structural properties. The properties of pulsations exhibited by sdA stars would contribute substantially to our developing understanding of this class. Methods. We extend our photometric campaign to discover pulsating extremely low-mass white dwarfs from the McDonald Observatory to target sdA stars classified from SDSS spectra. We also obtain follow-up time series spectroscopy to search for binary signatures from four new pulsators. Results. Out of 23 sdA stars observed, we clearly detect stellar pulsations in 7. Dominant pulsation periods range from 4.6 min to 12.3 h, with most on timescales of approximately one hour. We argue specific classifications for some of the new variables, identifying both compact and likely main sequence dwarf pulsators, along with a candidate low-mass RR Lyrae star. Conclusions. With dominant pulsation periods spanning orders of magnitude, the pulsational evidence supports the emerging narrative that the sdA class consists of multiple stellar populations. Since multiple types of sdA exhibit stellar pulsations, follow-up asteroseismic analysis can be used to probe the precise evolutionary natures and stellar structures of these individual subpopulations.


2014 ◽  
Vol 13 (2) ◽  
pp. 155-157 ◽  
Author(s):  
R. D. Haywood ◽  
A. Collier Cameron ◽  
D. Queloz ◽  
S.C.C. Barros ◽  
M. Deleuil ◽  
...  

AbstractThe majority of extra-solar planets have been discovered (or confirmed after follow-up) through radial-velocity (RV) surveys. Using ground-based spectrographs such as High Accuracy Radial Velocity Planetary Search (HARPS) and HARPS-North, it is now possible to detect planets that are only a few times the mass of the Earth. However, the presence of dark spots on the stellar surface produces RV signals that are very similar in amplitude to those caused by orbiting low-mass planets. Disentangling these signals has thus become the biggest challenge in the detection of Earth-mass planets using RV surveys. To do so, we use the star's lightcurve to model the RV variations produced by spots. Here we present this method and show the results of its application to CoRoT-7.


2019 ◽  
Vol 488 (4) ◽  
pp. 5114-5126 ◽  
Author(s):  
Baptiste Klein ◽  
J-F Donati

ABSTRACT We simulate a radial velocity (RV) follow-up of the TRAPPIST-1 system, a faithful representative of M dwarfs hosting transiting Earth-sized exoplanets to be observed with SPIRou in the months to come. We generate an RV curve containing the signature of the seven transiting TRAPPIST-1 planets and a realistic stellar activity curve statistically compatible with the light curve obtained with the K2 mission. We find a ±5 m s−1 stellar activity signal comparable in amplitude with the planet signal. Using various sampling schemes and white noise levels, we create time-series from which we estimate the masses of the seven planets. We find that the precision on the mass estimates is dominated by (i) the white noise level for planets c, f, and e and (ii) the stellar activity signal for planets b, d, and h. In particular, the activity signal completely outshines the RV signatures of planets d and h that remain undetected regardless of the RV curve sampling and level of white noise in the data set. We find that an RV follow-up of TRAPPIST-1 using SPIRou alone would likely result in an insufficient coverage of the rapidly evolving activity signal of the star, especially with bright-time observations only, making statistical methods such as Gaussian Process Regression hardly capable of firmly detecting planet f and accurately recovering the mass of planet g. In contrast, we show that using bi-site observations with good longitudinal complementary would allow for a more accurate filtering of the stellar activity RV signal.


2019 ◽  
Vol 627 ◽  
pp. A116 ◽  
Author(s):  
S. Lalitha ◽  
D. Baroch ◽  
J. C. Morales ◽  
V. M. Passegger ◽  
F. F. Bauer ◽  
...  

Although M dwarfs are known for high levels of stellar activity, they are ideal targets for the search of low-mass exoplanets with the radial velocity (RV) method. We report the discovery of a planetary-mass companion around LSPM J2116+0234 (M3.0 V) and confirm the existence of a planet orbiting GJ 686 (BD+18 3421; M1.0 V). The discovery of the planet around LSPM J2116+0234 is based on CARMENES RV observations in the visual and near-infrared channels. We confirm the planet orbiting around GJ 686 by analyzing the RV data spanning over two decades of observationsfrom CARMENES VIS, HARPS-N, HARPS, and HIRES. We find planetary signals at 14.44 and 15.53 d in the RV data for LSPM J2116+0234 and GJ 686, respectively. Additionally, the RV, photometric time series, and various spectroscopic indicators show hints of variations of 42 d for LSPM J2116+0234 and 37 d for GJ 686, which we attribute to the stellar rotation periods. The orbital parameters of the planets are modeled with Keplerian fits together with correlated noise from the stellar activity. A mini-Neptune with a minimum mass of 11.8 M⊕ orbits LSPM J2116+0234 producing a RV semi-amplitude of 6.19 m s−1, while a super-Earth of mass 6.6 M⊕ orbits GJ 686 and produces a RV semi-amplitude of 3.0 m s−1. Both LSPM J2116+0234 and GJ 686 have planetary companions populating the regime of exoplanets with masses lower than 15 M⊕ and orbital periods <20 d.


2019 ◽  
Vol 621 ◽  
pp. A49 ◽  
Author(s):  
R. Cloutier ◽  
N. Astudillo-Defru ◽  
R. Doyon ◽  
X. Bonfils ◽  
J.-M. Almenara ◽  
...  

In an earlier campaign to characterize the mass of the transiting temperate super-Earth K2-18b with HARPS, a second, non-transiting planet was posited to exist in the system at ~9 days. Further radial velocity follow-up with the CARMENES spectrograph visible channel revealed a much weaker signal at 9 days, which also appeared to vary chromatically and temporally, leading to the conclusion that the origin of the 9-day signal was more likely related to stellar activity than to a planetary presence. Here we conduct a detailed reanalysis of all available RV time-series – including a set of 31 previously unpublished HARPS measurements – to investigate the effects of time-sampling and of simultaneous modelling of planetary plus activity signals on the existence and origin of the curious 9-day signal. We conclude that the 9-day signal is real and was initially seen to be suppressed in the CARMENES data due to a small number of anomalous measurements, although the exact cause of these anomalies remains unknown. Investigation of the signal’s evolution in time with wavelength and detailed model comparison reveals that the 9-day signal is most likely planetary in nature. Using this analysis, we reconcile the conflicting HARPS and CARMENES results and measure precise and self-consistent planet masses of mp,b = 8.63 ± 1.35 and mp,c sinic = 5.62 ± 0.84 Earth masses. This work, along with the previously published RV papers on the K2-18 planetary system, highlights the importance of understanding the time-sampling and of modelling the simultaneous planet plus stochastic activity, particularly when searching for sub-Neptune-sized planets with radial velocities.


2020 ◽  
Vol 638 ◽  
pp. A95
Author(s):  
J.-B. Delisle ◽  
N. Hara ◽  
D. Ségransan

Correlated noise affects most astronomical datasets and to neglect accounting for it can lead to spurious signal detections, especially in low signal-to-noise conditions, which is often the context in which new discoveries are pursued. For instance, in the realm of exoplanet detection with radial velocity time series, stellar variability can induce false detections. However, a white noise approximation is often used because accounting for correlated noise when analyzing data implies a more complex analysis. Moreover, the computational cost can be prohibitive as it typically scales as the cube of the dataset size. For some restricted classes of correlated noise models, there are specific algorithms that can be used to help bring down the computational cost. This improvement in speed is particularly useful in the context of Gaussian process regression, however, it comes at the expense of the generality of the noise model. In this article, we present the S + LEAF noise model, which allows us to account for a large class of correlated noises with a linear scaling of the computational cost with respect to the size of the dataset. The S + LEAF model includes, in particular, mixtures of quasiperiodic kernels and calibration noise. This efficient modeling is made possible by a sparse representation of the covariance matrix of the noise and the use of dedicated algorithms for matrix inversion, solving, determinant computation, etc. We applied the S + LEAF model to reanalyze the HARPS radial velocity time series of the recently published planetary system HD 136352. We illustrate the flexibility of the S + LEAF model in handling various sources of noise. We demonstrate the importance of taking correlated noise into account, and especially calibration noise, to correctly assess the significance of detected signals.


2019 ◽  
Vol 625 ◽  
pp. A126 ◽  
Author(s):  
M. Pinamonti ◽  
A. Sozzetti ◽  
P. Giacobbe ◽  
M. Damasso ◽  
G. Scandariato ◽  
...  

Context. Small rocky planets seem to be very abundant around low-mass M-type stars. Their actual planetary population is however not yet precisely understood. Currently, several surveys aim to expand the statistics with intensive detection campaigns, both photometric and spectroscopic. Aims. The HADES program aims to improve the current statistics through the in-depth analysis of accurate radial-velocity (RV) monitoring in a narrow range of spectral sub-types, with the precision needed to detect small planets with a few Earth masses. Methods. We analyse 106 spectroscopic HARPS-N observations of the active M0-type star GJ 685 taken over the past five years. We combine these data with photometric measurements from different observatories to accurately model the stellar rotation and disentangle its signals from genuine Doppler planetary signals in the RV data. We run an MCMC analysis on the RV and activity index time series to model the planetary and stellar signals present in the data, applying Gaussian Process regression technique to deal with the stellar activity signals. Results. We identify three periodic signals in the RV time series, with periods of 9, 24, and 18 d. Combining the analyses of the photometry of the star with the activity indexes derived from the HARPS-N spectra, we identify the 18 d and 9 d signals as activity-related, corresponding to the stellar rotation period and its first harmonic, respectively. The 24 d signal shows no relation to any activity proxy, and therefore we identify it as a genuine planetary signal. We find the best-fit model describing the Doppler signal of the newly found planet, GJ 685 b, corresponding to an orbital period Pb = 24.160−0.047+0.061 d and a minimum mass MP sin i = 9.0−1.8+1.7 M⊕. We also study a sample of 70 RV-detected M-dwarf planets, and present new statistical evidence of a difference in mass distribution between the populations of single- and multi-planet systems, which can shed new light on the formation mechanisms of low-mass planets around late-type stars.


2019 ◽  
Vol 624 ◽  
pp. A38 ◽  
Author(s):  
M. Damasso ◽  
L. Zeng ◽  
L. Malavolta ◽  
A. Mayo ◽  
A. Sozzetti ◽  
...  

Context. K2-36 is a K dwarf orbited by two small (Rb = 1.43 ± 0.08 R⊕ and Rc = 3.2 ± 0.3 R⊕), close-in (ab = 0.022 au and ac = 0.054 au) transiting planets discovered by the Kepler/K2 space observatory. They are representatives of two distinct families of small planets (Rp < 4 R⊕) recently emerged from the analysis of Kepler data, with likely a different structure, composition and evolutionary pathways. Aims. We revise the fundamental stellar parameters and the sizes of the planets, and provide the first measurement of their masses and bulk densities, which we use to infer their structure and composition. Methods. We observed K2-36 with the HARPS-N spectrograph over ~3.5 yr, collecting 81 useful radial velocity measurements. The star is active, with evidence for increasing levels of magnetic activity during the observing time span. The radial velocity scatter is ~17 m s−1 due to the stellar activity contribution, which is much larger that the semi-amplitudes of the planetary signals. We tested different methods for mitigating the stellar activity contribution to the radial velocity time variations and measuring the planet masses with good precision. Results. We find that K2-36 is likely a ~1 Gyr old system, and by treating the stellar activity through a Gaussian process regression, we measured the planet masses mb = 3.9 ± 1.1 M⊕ and mc = 7.8 ± 2.3 M⊕. The derived planet bulk densities ρb = 7.2−2.1+2.5 g cm−3 and ρc = 1.3−0.5+0.7 g cm−3 point out that K2-36 b has a rocky, Earth-like composition, and K2-36 c is a low-density sub-Neptune. Conclusions. Composed of two planets with similar orbital separations but different densities, K2-36 represents an optimal laboratory for testing the role of the atmospheric escape in driving the evolution of close-in, low-mass planets after ~1 Gyr from their formation. Due to their similarities, we performed a preliminary comparative analysis between the systems K2-36 and Kepler-36, which we deem worthy of a more detailed investigation.


2018 ◽  
Vol 618 ◽  
pp. A142 ◽  
Author(s):  
X. Bonfils ◽  
J.-M. Almenara ◽  
R. Cloutier ◽  
A. Wünsche ◽  
N. Astudillo-Defru ◽  
...  

The source GJ1132 is a nearby red dwarf known to host a transiting Earth-size planet. After its initial detection, we pursued an intense follow-up with the HARPS velocimeter. We now confirm the detection of GJ1132b with radial velocities alone. We refined its orbital parameters, and in particular, its mass (mb = 1.66 ± 0.23 M⊕), density (ρb = 6.3 ± 1.3 g cm−3), and eccentricity (eb < 0.22; 95%). We also detected at least one more planet in the system. GJ1132c is a super-Earth with period Pc = 8.93 ± 0.01 days and minimum mass mc sinic = 2.64 ± 0.44 M⊕. Receiving about 1.9 times more flux than Earth in our solar system, its equilibrium temperature is that of a temperate planet (Teq = 230−300 K for albedos A = 0.75 − 0.00), which places GJ1132c near the inner edge of the so-called habitable zone. Despite an a priori favorable orientation for the system, Spitzer observations reject most transit configurations, leaving a posterior probability <1% that GJ1132c transits. GJ1132(d) is a third signal with period Pd = 177 ± 5 days attributed to either a planet candidate with minimum mass md sin id = 8.4−2.5+1.7 M⊕ or stellar activity. Its Doppler signal is the most powerful in our HARPS time series but appears on a timescale where either the stellar rotation or a magnetic cycle are viable alternatives to the planet hypothesis. On the one hand, the period is different than that measured for the stellar rotation (~125 days), and a Bayesian statistical analysis we performed with a Markov chain Monte Carlo and Gaussian processes demonstrates that the signal is better described by a Keplerian function than by correlated noise. On the other hand, periodograms of spectral indices sensitive to stellar activity show power excess at similar periods to that of this third signal, and radial velocity shifts induced by stellar activity can also match a Keplerian function. We, therefore, prefer to leave the status of GJ1132(d) undecided.


Sign in / Sign up

Export Citation Format

Share Document