scholarly journals Disentangling planetary orbits from stellar activity in radial-velocity surveys

2014 ◽  
Vol 13 (2) ◽  
pp. 155-157 ◽  
Author(s):  
R. D. Haywood ◽  
A. Collier Cameron ◽  
D. Queloz ◽  
S.C.C. Barros ◽  
M. Deleuil ◽  
...  

AbstractThe majority of extra-solar planets have been discovered (or confirmed after follow-up) through radial-velocity (RV) surveys. Using ground-based spectrographs such as High Accuracy Radial Velocity Planetary Search (HARPS) and HARPS-North, it is now possible to detect planets that are only a few times the mass of the Earth. However, the presence of dark spots on the stellar surface produces RV signals that are very similar in amplitude to those caused by orbiting low-mass planets. Disentangling these signals has thus become the biggest challenge in the detection of Earth-mass planets using RV surveys. To do so, we use the star's lightcurve to model the RV variations produced by spots. Here we present this method and show the results of its application to CoRoT-7.

Author(s):  
J. R. Barnes ◽  
C. A. Haswell

AbstractAriel’s ambitious goal to survey a quarter of known exoplanets will transform our knowledge of planetary atmospheres. Masses measured directly with the radial velocity technique are essential for well determined planetary bulk properties. Radial velocity masses will provide important checks of masses derived from atmospheric fits or alternatively can be treated as a fixed input parameter to reduce possible degeneracies in atmospheric retrievals. We quantify the impact of stellar activity on planet mass recovery for the Ariel mission sample using Sun-like spot models scaled for active stars combined with other noise sources. Planets with necessarily well-determined ephemerides will be selected for characterisation with Ariel. With this prior requirement, we simulate the derived planet mass precision as a function of the number of observations for a prospective sample of Ariel targets. We find that quadrature sampling can significantly reduce the time commitment required for follow-up RVs, and is most effective when the planetary RV signature is larger than the RV noise. For a typical radial velocity instrument operating on a 4 m class telescope and achieving 1 m s−1 precision, between ~17% and ~ 37% of the time commitment is spent on the 7% of planets with mass Mp < 10 M⊕. In many low activity cases, the time required is limited by asteroseismic and photon noise. For low mass or faint systems, we can recover masses with the same precision up to ~3 times more quickly with an instrumental precision of ~10 cm s−1.


2019 ◽  
Vol 489 (2) ◽  
pp. 2555-2571 ◽  
Author(s):  
M Damasso ◽  
M Pinamonti ◽  
G Scandariato ◽  
A Sozzetti

Abstract Gaussian process regression is a widespread tool used to mitigate stellar correlated noise in radial velocity (RV) time series. It is particularly useful to search for and determine the properties of signals induced by small-sized low-mass planets (Rp < 4 R⊕, mp < 10 M⊕). By using extensive simulations based on a quasi-periodic representation of the stellar activity component, we investigate the ability in retrieving the planetary parameters in 16 different realistic scenarios. We analyse systems composed by one planet and host stars having different levels of activity, focusing on the challenging case represented by low-mass planets, with Doppler semi-amplitudes in the range 1–3 $\rm{\,m\,s^{-1}}$. We consider many different configurations for the quasi-periodic stellar activity component, as well as different combinations of the observing epochs. We use commonly employed analysis tools to search for and characterize the planetary signals in the data sets. The goal of our injection-recovery statistical analysis is twofold. First, we focus on the problem of planet mass determination. Then, we analyse in a statistical way periodograms obtained with three different algorithms, in order to explore some of their general properties, as the completeness and reliability in retrieving the injected planetary and stellar activity signals with low false alarm probabilities. This work is intended to provide some understanding of the biases introduced in the planet parameters inferred from the analysis of RV time series that contain correlated signals due to stellar activity. It also aims to motivate the use and encourage the improvement of extensive simulations for planning spectroscopic follow-up observations.


2021 ◽  
Vol 163 (1) ◽  
pp. 19
Author(s):  
Rachael M. Roettenbacher ◽  
Samuel H. C. Cabot ◽  
Debra A. Fischer ◽  
John D. Monnier ◽  
Gregory W. Henry ◽  
...  

Abstract The distortions of absorption line profiles caused by photospheric brightness variations on the surfaces of cool, main-sequence stars can mimic or overwhelm radial velocity (RV) shifts due to the presence of exoplanets. The latest generation of precision RV spectrographs aims to detect velocity amplitudes ≲ 10 cm s−1, but requires mitigation of stellar signals. Statistical techniques are being developed to differentiate between Keplerian and activity-related velocity perturbations. Two important challenges, however, are the interpretability of the stellar activity component as RV models become more sophisticated, and ensuring the lowest-amplitude Keplerian signatures are not inadvertently accounted for in flexible models of stellar activity. For the K2V exoplanet host ϵ Eridani, we separately used ground-based photometry to constrain Gaussian processes for modeling RVs and TESS photometry with a light-curve inversion algorithm to reconstruct the stellar surface. From the reconstructions of TESS photometry, we produced an activity model that reduced the rms scatter in RVs obtained with EXPRES from 4.72 to 1.98 m s−1. We present a pilot study using the CHARA Array and MIRC-X beam combiner to directly image the starspots seen in the TESS photometry. With the limited phase coverage, our spot detections are marginal with current data but a future dedicated observing campaign should allow for imaging, as well as allow the stellar inclination and orientation with respect to the debris disk to be definitively determined. This work shows that stellar surface maps obtained with high-cadence, time-series photometric and interferometric data can provide the constraints needed to accurately reduce RV scatter.


Author(s):  
Zoltán Garai ◽  
Theodor Pribulla ◽  
Richard Komžík ◽  
Emil Kundra ◽  
Ľubomír Hambálek ◽  
...  

Abstract Only a few exoplanets are known to orbit around fast rotating stars. One of them is XO-6b, which orbits an F5V-type star. Shortly after the discovery, we started multicolor photometric and radial-velocity follow-up observations of XO-6b, using the telescopes of Astronomical Institute of the Slovak Academy of Sciences. Our main scientific goals were to better characterize the planetary system and to search for transit timing variations. We refined several planetary and orbital parameters. Based on our measurements, the planet XO-6b seems to be about 10% larger, which is, however, only about 2σ difference, but its orbit inclination angle, with respect to the plane of the sky, seems to be significantly smaller, than it was determined originally by the discoverers. In this case we found about 9.5σ difference. Moreover, we observed periodic transit timing variations of XO-6b with a semi-amplitude of about 14 min and with a period of about 450 days. There are two plausible explanations of such transit timing variations: (1) a third object in the system XO-6 causing light-time effect, or (2) resonant perturbations between the transiting planet XO-6b and another unknown low-mass planet in this system. From the O-C diagram we derived that the assumed third object in the system should have a stellar mass, therefore significant variations are expected in the radial-velocity measurements of XO-6. Since this is not the case, and since all attempts to fit radial velocities and O-C data simultaneously failed to provide a consistent solution, more realistic is the second explanation.


2008 ◽  
Vol 4 (S253) ◽  
pp. 462-465
Author(s):  
I. Boisse ◽  
C. Moutou ◽  
A. Vidal-Madjar ◽  
F. Bouchy ◽  
F. Pont ◽  
...  

AbstractExoplanet search programs need to study how to disentangle radial-velocity (RV) variations due to Doppler motion and the noise induced by stellar activity. We monitored the active K2V HD 189733 with the high-resolution SOPHIE spectrograph (OHP, France). We refined the orbital parameters of HD 189733b and put limitations on the eccentricity and on a long-term velocity gradient. We subtracted the orbital motion of the planet and compared the variability of activity spectroscopic indices (HeI, Hα, Ca II H&K lines) to the evolution of the RV residuals and the shape of spectral lines. All are in agreement with an active stellar surface in rotation. We used such correlations to correct for the RV jitter due to stellar activity. This results in achieving a high precision on the orbital parameters, with a semi-amplitude: K=200.56±0.88m⋅s−1 and a derived planet mass of MP=1.13±0.03 MJup.


2019 ◽  
Vol 488 (4) ◽  
pp. 5114-5126 ◽  
Author(s):  
Baptiste Klein ◽  
J-F Donati

ABSTRACT We simulate a radial velocity (RV) follow-up of the TRAPPIST-1 system, a faithful representative of M dwarfs hosting transiting Earth-sized exoplanets to be observed with SPIRou in the months to come. We generate an RV curve containing the signature of the seven transiting TRAPPIST-1 planets and a realistic stellar activity curve statistically compatible with the light curve obtained with the K2 mission. We find a ±5 m s−1 stellar activity signal comparable in amplitude with the planet signal. Using various sampling schemes and white noise levels, we create time-series from which we estimate the masses of the seven planets. We find that the precision on the mass estimates is dominated by (i) the white noise level for planets c, f, and e and (ii) the stellar activity signal for planets b, d, and h. In particular, the activity signal completely outshines the RV signatures of planets d and h that remain undetected regardless of the RV curve sampling and level of white noise in the data set. We find that an RV follow-up of TRAPPIST-1 using SPIRou alone would likely result in an insufficient coverage of the rapidly evolving activity signal of the star, especially with bright-time observations only, making statistical methods such as Gaussian Process Regression hardly capable of firmly detecting planet f and accurately recovering the mass of planet g. In contrast, we show that using bi-site observations with good longitudinal complementary would allow for a more accurate filtering of the stellar activity RV signal.


2020 ◽  
Vol 495 (1) ◽  
pp. 734-742 ◽  
Author(s):  
Benjamin F Cooke ◽  
Don Pollacco

ABSTRACT We set out a simulation to explore the follow-up of exoplanet candidates. We look at comparing photometric (transit method) and spectroscopic (Doppler shift method) techniques using three instruments: Next-Generation Transit Survey, High-Accuracy Radial-velocity Planetary Search, and CORALIE. We take into account the precision of follow-up and required observing time in attempt to rank each method for a given set of planetary system parameters. The methods are assessed on two criteria: signal-to-noise ratio (S/N) of the detection and follow-up time before characterization. We find that different follow-up techniques are preferred for different regions of parameter space. For S/N, we find that the ratio of spectroscopic to photometric S/N for a given system goes like $R_{\rm p}/P^{{1}/{3}}$. For follow-up time, we find that photometry is favoured for the shortest period systems (&lt;10 d) as well as systems with small planet radii. Spectroscopy is then preferred for systems with larger radius, and thus more massive planets (given our assumed mass–radius relationship). Finally, we attempt to account for the availability of telescopes and weight the two methods accordingly.


2019 ◽  
Vol 621 ◽  
pp. A49 ◽  
Author(s):  
R. Cloutier ◽  
N. Astudillo-Defru ◽  
R. Doyon ◽  
X. Bonfils ◽  
J.-M. Almenara ◽  
...  

In an earlier campaign to characterize the mass of the transiting temperate super-Earth K2-18b with HARPS, a second, non-transiting planet was posited to exist in the system at ~9 days. Further radial velocity follow-up with the CARMENES spectrograph visible channel revealed a much weaker signal at 9 days, which also appeared to vary chromatically and temporally, leading to the conclusion that the origin of the 9-day signal was more likely related to stellar activity than to a planetary presence. Here we conduct a detailed reanalysis of all available RV time-series – including a set of 31 previously unpublished HARPS measurements – to investigate the effects of time-sampling and of simultaneous modelling of planetary plus activity signals on the existence and origin of the curious 9-day signal. We conclude that the 9-day signal is real and was initially seen to be suppressed in the CARMENES data due to a small number of anomalous measurements, although the exact cause of these anomalies remains unknown. Investigation of the signal’s evolution in time with wavelength and detailed model comparison reveals that the 9-day signal is most likely planetary in nature. Using this analysis, we reconcile the conflicting HARPS and CARMENES results and measure precise and self-consistent planet masses of mp,b = 8.63 ± 1.35 and mp,c sinic = 5.62 ± 0.84 Earth masses. This work, along with the previously published RV papers on the K2-18 planetary system, highlights the importance of understanding the time-sampling and of modelling the simultaneous planet plus stochastic activity, particularly when searching for sub-Neptune-sized planets with radial velocities.


2010 ◽  
Vol 6 (S273) ◽  
pp. 281-285 ◽  
Author(s):  
Isabelle Boisse ◽  
François Bouchy ◽  
Guillaume Hébrard ◽  
Xavier Bonfils ◽  
Nuno Santos ◽  
...  

AbstractPhotospheric stellar activity (i.e. dark spots or bright plages) might be an important source of noise and confusion in the radial-velocity (RV) measurements. Radial-velocimetry planet search surveys as well as follow-up of photometric transit surveys require a deeper understanding and characterization of the effects of stellar activities to disentangle it from planetary signals.We simulate dark spots on a rotating stellar photosphere. The variations of the RV are characterized and analyzed according to the stellar inclination, the latitude and the number of spots. The Lomb-Scargle periodograms of the RV variations induced by activity present power at the rotational period Prot of the star and its two-first harmonics Prot/2 and Prot/3. Three adjusted sinusoids fixed at the fundamental period and its two-first harmonics allow to remove about 90% of the RV jitter amplitude. We apply and validate our approach on four known active planet-host stars: HD 189733, GJ 674, CoRoT-7 and ι Hor. We succeed in fitting simultaneously activity and planetary signals on GJ674 and CoRoT-7. We excluded short-period low-mass exoplanets around ι Hor. Our approach is efficient to disentangle reflex-motion due to a planetary companion and stellar-activity induced-RV variations provided that 1) the planetary orbital period is not close to that of the stellar rotation or one of its two-first harmonics, 2) the rotational period of the star is accurately known, 3) the data cover more than one stellar rotational period.


2020 ◽  
Vol 493 (1) ◽  
pp. 973-985 ◽  
Author(s):  
Matías R Díaz ◽  
James S Jenkins ◽  
Davide Gandolfi ◽  
Eric D Lopez ◽  
Maritza G Soto ◽  
...  

ABSTRACT The Neptune desert is a feature seen in the radius-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here, we report the Transiting Exoplanet Survey Satellite (TESS) discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC 8003-1117-1 (TOI-132). TESS photometry shows transit-like dips at the level of ∼1400 ppm occurring every ∼2.11 d. High-precision radial velocity follow-up with High Accuracy Radial Velocity Planet Searcher confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of 11.38 $^{+0.84}_{-0.85}$ m s−1, which, when combined with the stellar mass of 0.97 ± 0.06 M⊙, provides a planetary mass of 22.40$^{+1.90}_{-1.92}$ M⊕. Modelling the TESS light curve returns a planet radius of 3.42$^{+0.13}_{-0.14}$ R⊕, and therefore the planet bulk density is found to be 3.08$^{+0.44}_{-0.46}$ g cm−3. Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3$^{+1.2}_{-2.3}$ per cent. TOI-132 b is a TESS Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding of the Neptune desert.


Sign in / Sign up

Export Citation Format

Share Document