scholarly journals V1082-Sgr: A magnetic cataclysmic variable with a lobe-filling companion star

2019 ◽  
Vol 489 (3) ◽  
pp. 3031-3035
Author(s):  
Xiaojie Xu ◽  
Yong Shao ◽  
Xiang-Dong Li

ABSTRACT V1082 Sgr is a cataclysmic variable with accretion luminosity above 1034 erg s−1, indicating a mass-transfer rate above $10^{-9}\, \mathrm{M}_{\odot }$  yr−1. However, its K-type companion was suggested to be underfilling its Roche lobe (RL), making the high mass-transfer rate a mystery. In this work we propose a possible model to explain this discrepancy. The system is proposed to be an intermediate polar, with its K-type companion filling its RL. The mass of the white dwarf star is evaluated to be $0.77\pm 0.11\, \mathrm{M}_{\odot }$ from both X-ray continuum fitting and Fe line flux ratio measurements. We make numerical simulations to search for the possible progenitors of the system. The results show that a binary with an initial 1.5–2.5$\, \mathrm{M}_{\odot }$ companion in a one to two day orbit (or an initial 1.0–1.4$\, \mathrm{M}_{\odot }$ companion in a 3.2–4.1 d orbit) may naturally evolve to a cataclysmic variable with a $\sim 0.55 \pm 0.11\, \mathrm{M}_{\odot }$, Roche-lobe-filling companion in a 0.86 d orbit. The effective temperature of the donor star, the mass-transfer rate, and the derived V-band magnitude are all consistent with previous observations.

2019 ◽  
Vol 628 ◽  
pp. A19 ◽  
Author(s):  
M. Quast ◽  
N. Langer ◽  
T. M. Tauris

Context. The origin and number of the Galactic supergiant X-ray binaries is currently not well understood. They consist of an evolved massive star and a neutron star or black-hole companion. X-rays are thought to be generated from the accretion of wind material donated by the supergiant, while mass transfer due to Roche-lobe overflow is mostly disregarded because the high mass ratios of these systems are thought to render this process unstable. Aims. We investigate how the proximity of supergiant donor stars to the Eddington limit, and their advanced evolutionary stage, may influence the evolution of massive and ultra-luminous X-ray binaries with supergiant donor stars (SGXBs and ULXs). Methods. We constructed models of massive stars with different internal hydrogen and helium gradients (H/He gradients) and different hydrogen-rich envelope masses, and exposed them to slow mass-loss to probe the response of the stellar radius. In addition, we computed the corresponding Roche-lobe overflow mass-transfer evolution with our detailed binary stellar evolution code, approximating the compact objects as point masses. Results. We find that a H/He gradient in the layers beneath the surface, as it is likely present in the well-studied donor stars of observed SGBXs, can enable mass transfer in SGXBs on a nuclear timescale with a black-hole or a neutron star accretor, even for mass ratios in excess of 20. In our binary evolution models, the donor stars rapidly decrease their thermal equilibrium radius and can therefore cope with the inevitably strong orbital contraction imposed by the high mass ratio. We find that the orbital period derivatives of our models agree well with empirical values. We argue that the SGXB phase may be preceded by a common-envelope evolution. The envelope inflation near the Eddington limit means that this mechanism more likely occurs at high metallicity. Conclusion. Our results open a new perspective for understanding that SGBXs are numerous in our Galaxy and are almost completely absent in the Small Magellanic Cloud. Our results may also offer a way to find more ULX systems, to detect mass transfer on nuclear timescales in ULX systems even with neutron star accretors, and shed new light on the origin of the strong B-field in these neutron stars.


1997 ◽  
Vol 163 ◽  
pp. 828-829 ◽  
Author(s):  
R. F. Webbink ◽  
V. Kalogera

AbstractConsiderations of donor star stability, age, and mass transfer rate show that low-mass X-ray binaries and binary millisecond pulsars with orbital periods longer than a few days must have survived an initial phase of super-Eddington mass transfer. We review the physical arguments leading to this conclusion, and examine its implications for the apparent discrepancy between the death rate for low-mass X-ray binaries and the birth rate of binary millisecond pulsars.


1997 ◽  
Vol 163 ◽  
pp. 787-787
Author(s):  
K. Reinsch ◽  
A. van Teeseling ◽  
K. Beuermann ◽  
T.M.C. Abbott

The transient luminous soft X-ray source RXJ0513.9–6951 (Schaeidt et al., 1993, A&A 270, L9) is a high-mass-transfer binary system (Cowley et al., 1993, ApJ 418, L63; Pakull et al., 1993, A&A 278, L39) with a probable orbital period of 0.76 days (Crampton et al., 1996, ApJ 456, 320). Here, we summarize the results of a quasi-simultaneous optical and X-ray monitoring (see Fig. 1). The sudden decrease of the optical flux, the accompanying reddening, and the turn-on in the soft X-ray band can be quantitatively described by variations in the irradiation of the accretion disk by the hot central star (Reinsch et al., 1996, A&A 309, L11). In this simple model, we consider a white dwarf with nuclear burning of accreted matter (van den Heuvel et al., 1992, A&A 262, 97), surrounded by a flat standard disk. In the optical high state, accretion at near-Eddington rate occurs and the white dwarf photospheric radius must be considerably expanded causing an enhanced illumination of the disk and the secondary. In the optical low state, the photosphere shrinks in response to a temporarily slightly reduced mass-transfer rate. At the same time, the effective temperature increases, and the soft X-ray flux becomes detectable with ROSAT. This model does not depend on the particular cause for the drop in the accretion rate and can describe the optical/ X-ray variability with the total luminosity changing by less than 20 %.


2004 ◽  
Vol 194 ◽  
pp. 169-171
Author(s):  
Gaghik H. Tovmassian ◽  
Sergei V. Zharikov

AbstractWe discovered that the short period cataclysmic variable FS Aur at some epochs shows a photometric period close to the orbital. It exceeds the orbital period by ∽2%, which is a sign of the presence of a permanent superhump in the system. Superhumps tend to appear near short, low amplitude outbursts. We assume that FS Aur possesses a large thermally stable accretion disc and that the outburst may be due to the variable mass transfer rate. This, however, does not alter our previous explanation of yet another, 2.4 times longer than orbital, photometric period of FS Aur, found earlier, and persistently observed in its light curves.


2019 ◽  
Vol 622 ◽  
pp. L3 ◽  
Author(s):  
I. El Mellah ◽  
J. O. Sundqvist ◽  
R. Keppens

Ultraluminous X-ray sources (ULXs) have such high X-ray luminosities that they were long thought to be accreting intermediate-mass black holes. Yet, some ULXs have been shown to display periodic modulations and coherent pulsations suggestive of a neutron star in orbit around a stellar companion and accreting at super-Eddington rates. In this Letter, we propose that the mass transfer in ULXs could be qualitatively the same as in supergiant X-ray binaries (SgXBs), with a wind from the donor star highly beamed towards the compact object. Since the star does not fill its Roche lobe, this mass transfer mechanism known as “wind Roche lobe overflow” can remain stable even for large donor-star-to-accretor mass ratios. Based on realistic acceleration profiles derived from spectral observations and modeling of the stellar wind, we compute the bulk motion of the wind to evaluate the fraction of the stellar mass outflow entering the region of gravitational predominance of the compact object. The density enhancement towards the accretor leads to mass-transfer rates systematically much larger than the mass-accretion rates derived by the Bondi-Hoyle-Lyttleton formula. We identify orbital and stellar conditions for a SgXBs to transfer mass at rates necessary to reach the ULX luminosity level. These results indicate that Roche-lobe overflow is not the only way to funnel large quantities of material into the Roche lobe of the accretor. With the stellar mass-loss rates and parameters of M101 ULX-1 and NGC 7793 P13, wind Roche-lobe overflow can reproduce mass-transfer rates that qualify an object as an ULX.


2015 ◽  
Vol 2 (1) ◽  
pp. 188-191 ◽  
Author(s):  
L. Schmidtobreick ◽  
C. Tappert

The population of cataclysmic variables with orbital periods right above the period gap are dominated by systems with extremely high mass transfer rates, the so-called SW Sextantis stars. On the other hand, some old novae in this period range which are expected to show high mass transfer rate instead show photometric and/or spectroscopic resemblance to low mass transfer systems like dwarf novae. We discuss them as candidates for so-called hibernating systems, CVs that changed their mass transfer behaviour due to a previously experienced nova outburst. This paper is designed to provide input for further research and discussion as the results as such are still very preliminary.


2010 ◽  
Vol 9 (1-2) ◽  
pp. 63
Author(s):  
N. M. S. Kaminari ◽  
M. J. J. S. Ponte ◽  
H. A. Ponte

One of the biggest problems with ore processing in extractive metallurgical industries is the high toxicity of the heavy metals waste content (e.g., copper, lead, nickel and chrome). This work investigates the copper (II) íons removal from aqueous solutions in concentrations up to 1000 ppm. Therefore, a fluidized bed electrolytic reactor was used with flow-by configuration considered as a hopeful method due to the large specific surface area and the high mass transfer rate. The performance of the electrochemical reactor was investigated by using different porosities. Dimensionless Sherwood and Reynolds numbers were correlated to characterize the mass transport properties of the reactor, and they were fitted to the equation Sh = a.Reb.Sc1/3.


1995 ◽  
Vol 151 ◽  
pp. 336-337
Author(s):  
H.C. Pan ◽  
G.K. Skinner ◽  
R.A. Sunyaev ◽  
N.L. Alexandrovich

LMC X-3 is an X-ray binary in the Large Magellanic Cloud. It was discovered by UHURU and observations with various satellites showed that the X-ray source was variable by a factor of up to 100 (e.g. Traves et al. 1988). Using the GINGA and HEAO-1 observations, Cowley et al. (1991) found a strong ∼ 198 (or possibly ∼ 99) day modulation in the X-ray luminosities of LMC X-3. They suggested that this modulation may be due to an accretion disc precession, or periodic variations in the mass transfer rate, or a combination of both.We observed LMC X-3 with the TTM in 1988-1990. The present paper gives some results from the analysis of the data obtained.The TTM is a coded mask telescope on board the MIR space station. It is capable of producing images in the energy range 2-30 keV with a spectral resolution of about 18% at 6 keV (Brinkman et al. 1985).


Sign in / Sign up

Export Citation Format

Share Document