scholarly journals Predicting the LISA white dwarf binary population in the Milky Way with cosmological simulations

2019 ◽  
Vol 490 (4) ◽  
pp. 5888-5903 ◽  
Author(s):  
Astrid Lamberts ◽  
Sarah Blunt ◽  
Tyson B Littenberg ◽  
Shea Garrison-Kimmel ◽  
Thomas Kupfer ◽  
...  

ABSTRACT White dwarf binaries with orbital periods below 1 h will be the most numerous sources for the space-based gravitational wave detector Laser Interferometer Space Antenna (LISA). Based on thousands of individually resolved systems, we will be able to constrain binary evolution and provide a new map of the Milky Way and its close surroundings. In this paper we predict the main properties of populations of different types of detached white dwarf binaries detected by LISA over time. For the first time, we combine a high-resolution cosmological simulation of a Milky Way-mass galaxy (taken from the FIRE project) with a binary population synthesis model for low- and intermediate-mass stars. Our Galaxy model therefore provides a cosmologically realistic star formation and metallicity history for the Galaxy and naturally produces its different components such as the thin and thick disc, the bulge, the stellar halo, and satellite galaxies and streams. Thanks to the simulation, we show how different Galactic components contribute differently to the gravitational wave signal, mostly due to their typical age and distance distributions. We find that the dominant LISA sources will be He–He double white dwarfs (DWDs) and He–CO DWDs with important contributions from the thick disc and bulge. The resulting sky map of the sources is different from previous models, with important consequences for the searches for electromagnetic counterparts and data analysis. We also emphasize that much of the science-enabling information regarding white dwarf binaries, such as the chirp mass and the sky localization, becomes increasingly rich with long observations, including an extended mission up to 8 yr.

2017 ◽  
Vol 13 (S334) ◽  
pp. 347-348
Author(s):  
G. Nasello ◽  
A. C. Robin ◽  
C. Reylé ◽  
N. Lagarde

AbstractThe thick disc is a major component of the Milky Way but its epoch of formation and characteristics are still not yet well constrained. The Besançon Galaxy Model (BGM, Robin et al. 2003) is a population synthesis model based on a scenario of formation and evolution of the Galaxy, a star formation history, and a set of stellar evolution models. Thanks to Lagarde et al. (2017), new evolutionary tracks have been introduced into the Besancon Galaxy Model (STAREVOL, Lagarde et al. 2012) to provide global asteroseismic and surface chemical properties along the evolutionary stages. This updated Galaxy model will allow us to constrain the thick disc structure and history using the Markov Chain Monte Carlo fitting method (MCMC). We show preliminary results applying this MCMC method on the 2MASS photometric survey.


2020 ◽  
Vol 641 ◽  
pp. A96 ◽  
Author(s):  
A. Savino ◽  
A. Koch ◽  
Z. Prudil ◽  
A. Kunder ◽  
R. Smolec

The central kiloparsecs of the Milky Way are known to host an old, spheroidal stellar population, whose spatial and kinematical properties set it apart from the boxy-peanut structure that constitutes most of the central stellar mass. The nature of this spheroidal population, whether it is a small classical bulge, the innermost stellar halo, or a population of disk stars with large initial velocity dispersion, remains unclear. This structure is also a promising candidate to play host to some of the oldest stars in the Galaxy. Here we address the topic of the inner stellar spheroid age, using spectroscopic and photometric metallicities for a sample of 935 RR Lyrae stars that are constituents of this component. By means of stellar population synthesis, we derive an age-metallicity relation for RR Lyrae populations. We infer, for the RR Lyrae stars in the bulge spheroid, an extremely ancient age of 13.41 ± 0.54 Gyr and conclude they were among the first stars to form in what is now the Milky Way galaxy. Our age estimate for the central spheroid shows a remarkable agreement with the age profile that has been inferred for the Milky Way stellar halo, suggesting a connection between the two structures. However, we find mild evidence for a transition in the halo properties at rGC ∼ 5 kpc. We also investigate formation scenarios for metal-rich RR Lyrae stars, such as binarity and helium variations, and consider whether they can provide alternative explanations for the properties of our sample. We conclude that within our framework, the only viable alternative is to have younger, slightly helium-rich, RR Lyrae stars. This is a hypothesis that would open intriguing questions for the formation of the inner stellar spheroid.


2020 ◽  
Vol 639 ◽  
pp. A123 ◽  
Author(s):  
Matthias U. Kruckow

Aims. I aim to explain the mass discrepancy between the observed double neutron-star binary population by radio pulsar observations and gravitational-wave observation. Methods. I performed binary population synthesis calculations and compared their results with the radio and the gravitational-wave observations simultaneously. Results. Simulations of binary evolution were used to link different observations of double neutron star binaries with each other. I investigated the progenitor of GW190425 in more detail. A distribution of masses and merger times of the possible progenitors is presented. Conclusions. A mass discrepancy between the radio pulsars in the Milky Way with another neutron star companion and the inferred masses from gravitational-wave observations of those kind of merging systems is naturally found in binary evolution.


2021 ◽  
Vol 923 (1) ◽  
pp. 92
Author(s):  
Rohan P. Naidu ◽  
Charlie Conroy ◽  
Ana Bonaca ◽  
Dennis Zaritsky ◽  
Rainer Weinberger ◽  
...  

Abstract Several lines of evidence suggest that the Milky Way underwent a major merger at z ∼ 2 with the Gaia-Sausage-Enceladus (GSE) galaxy. Here we use H3 Survey data to argue that GSE entered the Galaxy on a retrograde orbit based on a population of highly retrograde stars with chemistry similar to the largely radial GSE debris. We present the first tailored N-body simulations of the merger. From a grid of ≈500 simulations we find that a GSE with M ⋆ = 5 × 108 M ⊙, M DM = 2 × 1011 M ⊙ best matches the H3 data. This simulation shows that the retrograde stars are stripped from GSE’s outer disk early in the merger. Despite being selected purely on angular momenta and radial distributions, this simulation reproduces and explains the following phenomena: (i) the triaxial shape of the inner halo, whose major axis is at ≈35° to the plane and connects GSE’s apocenters; (ii) the Hercules-Aquila Cloud and the Virgo Overdensity, which arise due to apocenter pileup; and (iii) the 2 Gyr lag between the quenching of GSE and the truncation of the age distribution of the in situ halo, which tracks the lag between the first and final GSE pericenters. We make the following predictions: (i) the inner halo has a “double-break” density profile with breaks at both ≈15–18 kpc and 30 kpc, coincident with the GSE apocenters; and (ii) the outer halo has retrograde streams awaiting discovery at >30 kpc that contain ≈10% of GSE’s stars. The retrograde (radial) GSE debris originates from its outer (inner) disk—exploiting this trend, we reconstruct the stellar metallicity gradient of GSE (−0.04 ± 0.01 dex r 50 − 1 ). These simulations imply that GSE delivered ≈20% of the Milky Way’s present-day dark matter and ≈50% of its stellar halo.


2020 ◽  
Vol 497 (2) ◽  
pp. 1603-1618 ◽  
Author(s):  
Robert J J Grand ◽  
Daisuke Kawata ◽  
Vasily Belokurov ◽  
Alis J Deason ◽  
Azadeh Fattahi ◽  
...  

ABSTRACT We analyse a set of cosmological magnetohydrodynamic simulations of the formation of Milky Way-mass galaxies identified to have a prominent radially anisotropic stellar halo component similar to the so-called ‘Gaia Sausage’ found in the Gaia data. We examine the effects of the progenitor of the Sausage (the Gaia–Enceladus Sausage, GES) on the formation of major galactic components analogous to the Galactic thick disc and inner stellar halo. We find that the GES merger is likely to have been gas-rich and contribute 10–50 ${{\ \rm per\ cent}}$ of gas to a merger-induced centrally concentrated starburst that results in the rapid formation of a compact, rotationally supported thick disc that occupies the typical chemical thick disc region of chemical abundance space. We find evidence that gas-rich mergers heated the proto-disc of the Galaxy, scattering stars on to less-circular orbits such that their rotation velocity and metallicity positively correlate, thus contributing an additional component that connects the Galactic thick disc to the inner stellar halo. We demonstrate that the level of kinematic heating of the proto-galaxy correlates with the kinematic state of the population before the merger, the progenitor mass, and orbital eccentricity of the merger. Furthermore, we show that the mass and time of the merger can be accurately inferred from local stars on counter-rotating orbits.


2008 ◽  
Vol 4 (S254) ◽  
pp. 423-428
Author(s):  
Gabriella De Lucia ◽  
Amina Helmi

AbstractWe use a series of high-resolution N-body simulations of a ‘Milky-Way’ halo, coupled to semi-analytic techniques, to study the formation of our own Galaxy and of its stellar halo. Our model Milky Way galaxy is a relatively young system whose physical properties are in quite good agreement with observational determinations. In our model, the stellar halo is mainly formed from a few massive satellites accreted early on during the galaxy's lifetime. The stars in the halo do not exhibit any metallicity gradient, but higher metallicity stars are more centrally concentrated than stars with lower abundances. This is due to the fact that the most massive satellites contributing to the stellar halo are also more metal rich, and dynamical friction drags them closer to the inner regions of the host halo.


Author(s):  
P. Di Matteo

AbstractThe Galactic bulge, that is the prominent out-of-plane over-density present in the inner few kiloparsecs of the Galaxy, is a complex structure, as the morphology, kinematics, chemistry, and ages of its stars indicate. To understand the nature of its main components—those at [Fe/H] ≳ −1 dex—it is necessary to make an inventory of the stellar populations of the Galactic disc(s), and of their borders: the chemistry of the disc at the solar vicinity, well known from detailed studies of stars over many years, is not representative of the whole disc. This finding, together with the recent revisions of the mass and sizes of the thin and thick discs, constitutes a major step in understanding the bulge complexity. N-body models of a boxy-/peanut-shaped bulge formed from a thin disc through the intermediary of a bar have been successful in interpreting a number of global properties of the Galactic bulge, but they fail in reproducing the detailed chemo-kinematic relations satisfied by its components and their morphology. It is only by adding the thick disc to the picture that we can understand the nature of the Galactic bulge.


2021 ◽  
pp. 25-30
Author(s):  
J. Petrovic

This paper presents detailed evolutionary models of low-mass binary systems (1.25 + 1 M?) with initial orbital periods of 10, 50 and 100 days and accretion efficiency of 10%, 20%, 50%, and a conservative assumption. All models are calculated with the MESA (Modules for Experiments in Stellar Astrophysics) evolutionary code. We show that such binary systems can evolve via a stable Case B mass transfer into long period helium white dwarf systems.


Sign in / Sign up

Export Citation Format

Share Document