scholarly journals A General Model to Explain Repeated Turnovers of Sex Determination in the Salicaceae

Author(s):  
Wenlu Yang ◽  
Deyan Wang ◽  
Yiling Li ◽  
Zhiyang Zhang ◽  
Shaofei Tong ◽  
...  

Abstract Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex-determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosomes in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.

Author(s):  
Wenlu Yang ◽  
Zhiyang Zhang ◽  
Deyan Wang ◽  
Yiling Li ◽  
Shaofei Tong ◽  
...  

AbstractDioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms through which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosome in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.


2017 ◽  
Vol 3 (5) ◽  
pp. e177 ◽  
Author(s):  
Javier Ruiz-Martínez ◽  
Luis J. Azcona ◽  
Alberto Bergareche ◽  
Jose F. Martí-Massó ◽  
Coro Paisán-Ruiz

Objective:Despite the enormous advancements made in deciphering the genetic architecture of Parkinson disease (PD), the majority of PD is idiopathic, with single gene mutations explaining only a small proportion of the cases.Methods:In this study, we clinically evaluated 2 unrelated Spanish families diagnosed with PD, in which known PD genes were previously excluded, and performed whole-exome sequencing analyses in affected individuals for disease gene identification.Results:Patients were diagnosed with typical PD without relevant distinctive symptoms. Two different novel mutations were identified in the CSMD1 gene. The CSMD1 gene, which encodes a complement control protein that is known to participate in the complement activation and inflammation in the developing CNS, was previously shown to be associated with the risk of PD in a genome-wide association study.Conclusions:We conclude that the CSMD1 mutations identified in this study might be responsible for the PD phenotype observed in our examined patients. This, along with previous reported studies, may suggest the complement pathway as an important therapeutic target for PD and other neurodegenerative diseases.


2019 ◽  
Author(s):  
Paulino Martínez ◽  
Diego Robledo ◽  
Xoana Taboada ◽  
Andrés Blanco ◽  
Antonio Gómez-Tato ◽  
...  

ABSTRACTA major challenge in evolutionary biology is to find an explanation for the variation in sex-determining (SD) systems across taxa and to understand the mechanisms driving sex chromosome differentiation. We studied the turbot, holding a ZW/ZZ SD system and no sex chromosome heteromorphism, by combining classical genetics and genomics approaches to disentangle the genetic architecture of this trait. RAD-Seq was used to genotype 18,214 SNPs on 1,135 fish from 36 families and a genome wide association study (GWAS) identified a ∼ 6 Mb region on LG5 associated with sex (P < 0.05). The most significant associated markers were located close to sox2, dnajc19 and fxr1 genes. A segregation analysis enabled narrowing down the associated region and evidenced recombination suppression in a region overlapping the candidate genes. A Nanopore/Illumina assembly of the SD region using ZZ and WW individuals identified a single SNP fully associated with Z and W chromosomes. RNA-seq from 5-90 day-old fish detected the expression along the gonad differentiation period of a short non-coding splicing variant (ncRNA) included in a vertebrate-conserved long non-coding RNA overlapping sox2. qPCR showed that sox2 was the only differentially expressed gene between males and females at 50-55 days post fertilization, just prior the beginning of gonad differentiation. More refined information on the involvement of secondary genetic and environmental factors and their interactions on SD was gathered after the analysis of a broad sample of families. Our results confirm the complex nature of SD in turbot and support sox2 as its main driver.


2020 ◽  
Vol 37 (8) ◽  
pp. 2357-2368 ◽  
Author(s):  
Yiyuan Li ◽  
Bo Zhang ◽  
Nancy A Moran

Abstract Different evolutionary forces shape gene content and sequence evolution on autosomes versus sex chromosomes. Location on a sex chromosome can favor male-beneficial or female-beneficial mutations depending on the sex determination system and selective pressure on different sexual morphs. An X0 sex determination can lead to autosomal enrichment of male-biased genes, as observed in some hemipteran insect species. Aphids share X0 sex determination; however, models predict the opposite pattern, due to their unusual life cycles, which alternate between all-female asexual generations and a single sexual generation. Predictions include enrichment of female-biased genes on autosomes and of male-biased genes on the X, in contrast to expectations for obligately sexual species. Robust tests of these models require chromosome-level genome assemblies for aphids and related hemipterans with X0 sex determination and obligate sexual reproduction. In this study, we built the first chromosome-level assembly of a psyllid, an aphid relative with X0 sex determination and obligate sexuality, and compared it with recently resolved chromosome-level assemblies of aphid genomes. Aphid and psyllid X chromosomes differ strikingly. In aphids, female-biased genes are strongly enriched on autosomes and male-biased genes are enriched on the X. In psyllids, male-biased genes are enriched on autosomes. Furthermore, functionally important gene categories of aphids are enriched on autosomes. Aphid X-linked genes and male-biased genes are under relaxed purifying selection, but gene content and order on the X is highly conserved, possibly reflecting constraints imposed by unique chromosomal mechanisms associated with the unusual aphid life cycle.


2018 ◽  
Author(s):  
Luisa Bresadola ◽  
Celine Caseys ◽  
Stefano Castiglione ◽  
C. Alex Buerkle ◽  
Daniel Wegmann ◽  
...  

The genomic architecture of functionally important traits is key to understanding the maintenance of reproductive barriers and trait differences when divergent populations or species hybridize. We conducted a Genome-Wide Association Study (GWAS) to study trait architecture in natural hybrids of two ecologically divergent Populus species. We genotyped 472 seedlings from a natural hybrid zone of Populus alba and P. tremula for genome-wide markers from reduced representation sequencing, phenotyped the plants in common gardens for 46 phytochemical (phenylpropanoid), morphological, and growth traits, and used a Bayesian polygenic model for mapping. We detected three classes of genomic architectures: (1) traits with finite, detectable associations of genetic loci with phenotypic variation in addition to highly polygenic heritability, (2) traits with indications for polygenic heritability only, (3) traits with no detectable heritability. For class (1), we identified genome regions with plausible candidate genes for phenylpropanoid biosynthesis or its regulation, including MYB transcription factors and glycosyl transferases. GWAS in natural, recombinant hybrids represents a promising step towards resolving the genomic architecture of phenotypic traits in long-lived species. This facilitates the fine-mapping and subsequent functional characterization of genes and networks causing differences in hybrid performance and fitness.


Sign in / Sign up

Export Citation Format

Share Document