Angiopoietin 2 stimulates trophoblast invasion via a mechanism associated with JNK signaling

Author(s):  
Huomei Hou ◽  
Fen Ning ◽  
Joy Yue Zhang ◽  
Qinsheng Lu ◽  
Min Zhang ◽  
...  

Abstract Extravillous trophoblast cell (EVT) invasion is tightly controlled, and its dysregulation can lead to altered spiral artery remodeling and contribute to a number of different pregnancy complications. Angiopoietin-2 (Ang-2) is expressed by trophoblast cells and various cells in the decidua, and trophoblast cells express its receptor, Tie2. Ang-2 has been shown to play roles in tumor progression and metastasis but it is not known if it also regulates EVT invasion. Here we show that both the HTR-8/SVneo cell line and primary isolates of human EVT expressed various integrins and the Tie2 receptor, and Ang-2 stimulated their migration and/or invasion. Ang-2 increased expression of matrix metalloproteinase (MMP)2 and MMP9, altered the cytoskeleton of HTR-8/SVneo cells and also induced phosphorylation of Tie2, JNK and c-Jun. Inhibition of p-JNK (using SP600125) blocked the Ang-2 induced invasion of HTR-8/SVneo cells. In addition, inhibition of Tie2 (pexmetinib) and integrin signaling (RGDS and ATN-161) also blocked Ang-2 induced invasion. In conclusion, we demonstrate that Ang-2 can stimulate EVT invasion via a mechanism associated with activation of both the Tie2 receptor and integrins, which appear to work through different pathways; Tie2 through the JNK/c-JUN pathway and integrins through an as yet unidentified pathway(s). We therefore propose that any alterations in Ang-2 expression in the decidua would lead to an imbalance in pro- and anti-invasive factors, disrupting regulation of EVT invasion and spiral artery remodeling and thereby contribute to the aetiology of several complications of pregnancy.

2021 ◽  
Vol 118 (10) ◽  
pp. e2016517118
Author(s):  
Kaela M. Varberg ◽  
Khursheed Iqbal ◽  
Masanaga Muto ◽  
Mikaela E. Simon ◽  
Regan L. Scott ◽  
...  

Invasive trophoblast cells are critical to spiral artery remodeling in hemochorial placentation. Insufficient trophoblast cell invasion and vascular remodeling can lead to pregnancy disorders including preeclampsia, preterm birth, and intrauterine growth restriction. Previous studies in mice identified achaete-scute homolog 2 (ASCL2) as essential to extraembryonic development. We hypothesized that ASCL2 is a critical and conserved regulator of invasive trophoblast cell lineage development. In contrast to the mouse, the rat possesses deep intrauterine trophoblast cell invasion and spiral artery remodeling similar to human placentation. In this study, we investigated invasive/extravillous trophoblast (EVT) cell differentiation using human trophoblast stem (TS) cells and a loss-of-function mutant Ascl2 rat model. ASCL2 transcripts are expressed in the EVT column and junctional zone, which represent tissue sources of invasive trophoblast progenitor cells within human and rat placentation sites, respectively. Differentiation of human TS cells into EVT cells resulted in significant up-regulation of ASCL2 and several other transcripts indicative of EVT cell differentiation. Disruption of ASCL2 impaired EVT cell differentiation, as indicated by cell morphology and transcript profiles. RNA sequencing analysis of ASCL2-deficient trophoblast cells identified both down-regulation of EVT cell-associated transcripts and up-regulation of syncytiotrophoblast-associated transcripts, indicative of dual activating and repressing functions. ASCL2 deficiency in the rat impacted placental morphogenesis, resulting in junctional zone dysgenesis and failed intrauterine trophoblast cell invasion. ASCL2 acts as a critical and conserved regulator of invasive trophoblast cell lineage development and a modulator of the syncytiotrophoblast lineage.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A747-A748
Author(s):  
Cuiping Hu ◽  
Junhao Yan

Abstract The adequate invasion of extravillous trophoblast cells (EVTs) is indispensable for the implantation of embryos and subsequent remodeling of uterine spiral arteries in early human gestation. Bone morphogenetic protein 2 (BMP2), which is abundantly expressed at the maternal-fetal interface, has been shown to promote the human EVT invasion process (1). Integrin switching (i.e., a switch from α6β4 to αvβ3) plays essential roles in cell-extracellular matrix adhesion and has been reported to influence EVT migration and invasion (2). Moreover, integrin β3 has been found to promote the adhesion, invasion, and migration abilities of embryonic trophoblasts (3). However, whether integrin β3 participates in BMP2 signaling and mediates BMP2-increased-human trophoblast invasion remains unknown. The purpose of our study was to explore the effects of BMP2 on integrin αvβ3 expression and the possible mediation role of integrin β3 in BMP2-regulated human trophoblast invasion. We used immortalized human trophoblast cell line (HTR8/SVneo) and primary human extravillous trophoblast cells (EVTs) isolated from first-trimester villi as study models. RT-qPCR and Western blot assay were respectively utilized to detect the messenger RNA and protein levels of intergrin αv and β3. The function of the target protein was studied by siRNA knockdown, and the trophoblast invasion ability was checked by Matrigel-coated transwell invasion assays. Our results demonstrated that the mRNA and protein levels of integrin β3, rather than integrin αv, were up-regulated after BMP2 treatment in HTR8/SVneo and primary EVT cells. Importantly, siRNA-mediated down-regulation of integrin β3 significantly inhibited basal and BMP2-induced HTR8/SVneo cell invasionas measured by transwell invasion assay. In conclusion, we findings support that BMP2 promotes human trophoblast cell invasion by up-regulating integrin β3 expression, benefiting the in-depth understanding of the pro-invasive effect of BMP2 on human trophoblasts during early pregnancy. Reference: (1) Hong-Jin Zhao et al., Cell Death Dis 2018;9:174. (2) Damsky, C.H. et al, Development 1994; 120, 3657-3666. (3) Dong-Mei He et al., Reproduction 2019;157:423-430.


2016 ◽  
Vol 113 (46) ◽  
pp. E7212-E7221 ◽  
Author(s):  
Damayanti Chakraborty ◽  
Wei Cui ◽  
Gracy X. Rosario ◽  
Regan L. Scott ◽  
Pramod Dhakal ◽  
...  

The hemochorial placenta develops from the coordinated multilineage differentiation of trophoblast stem (TS) cells. An invasive trophoblast cell lineage remodels uterine spiral arteries, facilitating nutrient flow, failure of which is associated with pathological conditions such as preeclampsia, intrauterine growth restriction, and preterm birth. Hypoxia plays an instructive role in influencing trophoblast cell differentiation and regulating placental organization. Key downstream hypoxia-activated events were delineated using rat TS cells and tested in vivo, using trophoblast-specific lentiviral gene delivery and genome editing. DNA microarray analyses performed on rat TS cells exposed to ambient or low oxygen and pregnant rats exposed to ambient or hypoxic conditions showed up-regulation of genes characteristic of an invasive/vascular remodeling/inflammatory phenotype. Among the shared up-regulated genes was matrix metallopeptidase 12 (MMP12). To explore the functional importance of MMP12 in trophoblast cell-directed spiral artery remodeling, we generated an Mmp12 mutant rat model using transcription activator-like nucleases-mediated genome editing. Homozygous mutant placentation sites showed decreased hypoxia-dependent endovascular trophoblast invasion and impaired trophoblast-directed spiral artery remodeling. A link was established between hypoxia/HIF and MMP12; however, evidence did not support Mmp12 as a direct target of HIF action. Lysine demethylase 3A (KDM3A) was identified as mediator of hypoxia/HIF regulation of Mmp12. Knockdown of KDM3A in rat TS cells inhibited the expression of a subset of the hypoxia–hypoxia inducible factor (HIF)-dependent transcripts, including Mmp12, altered H3K9 methylation status, and decreased hypoxia-induced trophoblast cell invasion in vitro and in vivo. The hypoxia-HIF-KDM3A-MMP12 regulatory circuit is conserved and facilitates placental adaptations to environmental challenges.


Reproduction ◽  
2020 ◽  
Vol 160 (1) ◽  
pp. 31-37
Author(s):  
D Randall Armant ◽  
Graham W Aberdeen ◽  
Brian A Kilburn ◽  
Gerald J Pepe ◽  
Eugene D Albrecht

Placental extravillous trophoblast remodeling of the uterine spiral arteries is important for promoting blood flow to the placenta and fetal development. Heparin-binding EGF-like growth factor (HB-EGF), an EGF family member, stimulates differentiation and invasive capacity of extravillous trophoblasts in vitro. Trophoblast expression and maternal levels of HB-EGF are reduced at term in women with preeclampsia, but it is uncertain whether HB-EGF is downregulated earlier when it may contribute to placental insufficiency. A nonhuman primate model has been established in which trophoblast remodeling of the uterine spiral arteries is suppressed by shifting the rise in estrogen from the second to the first trimester of baboon pregnancy. In the present study, we used this model to determine if placental HB-EGF is altered by prematurely elevating estrogen early in baboon gestation. Uterine spiral artery remodeling and placental expression of HB-EGF and other EGF family members were assessed on day 60 of gestation in baboons treated with estradiol (E2) daily between days 25 and 59 of gestation (term = 184 days). The percentages of spiral artery remodeling were 90, 84 and 70% lower (P < 0.01), respectively, for vessels of 26–50, 51–100 and >100 µm diameter in E2-treated compared with untreated baboons. HB-EGF protein quantified by immunocytochemical staining/image analysis was decreased three-fold (P < 0.01) in the placenta of E2-treated versus untreated baboons, while amphiregulin (AREG) and EGF expression was unaltered. Therefore, we propose that HB-EGF modulates the estrogen-sensitive remodeling of the uterine spiral arteries by the extravillous trophoblast in early baboon pregnancy.


2021 ◽  
Vol 118 (50) ◽  
pp. e2111267118
Author(s):  
Masanaga Muto ◽  
Damayanti Chakraborty ◽  
Kaela M. Varberg ◽  
Ayelen Moreno-Irusta ◽  
Khursheed Iqbal ◽  
...  

Hemochorial placentation is characterized by the development of trophoblast cells specialized to interact with the uterine vascular bed. We utilized trophoblast stem (TS) cell and mutant rat models to investigate regulatory mechanisms controlling trophoblast cell development. TS cell differentiation was characterized by acquisition of transcript signatures indicative of an endothelial cell-like phenotype, which was highlighted by the expression of anticoagulation factors including tissue factor pathway inhibitor (TFPI). TFPI localized to invasive endovascular trophoblast cells of the rat placentation site. Disruption of TFPI in rat TS cells interfered with development of the endothelial cell-like endovascular trophoblast cell phenotype. Similarly, TFPI was expressed in human invasive/extravillous trophoblast (EVT) cells situated within first-trimester human placental tissues and following differentiation of human TS cells. TFPI was required for human TS cell differentiation to EVT cells. We next investigated the physiological relevance of TFPI at the placentation site. Genome-edited global TFPI loss-of-function rat models revealed critical roles for TFPI in embryonic development, resulting in homogeneous midgestation lethality prohibiting analysis of the role of TFPI as a regulator of the late-gestation wave of intrauterine trophoblast cell invasion. In vivo trophoblast-specific TFPI knockdown was compatible with pregnancy but had profound effects at the uterine–placental interface, including restriction of the depth of intrauterine trophoblast cell invasion while leading to the accumulation of natural killer cells and increased fibrin deposition. Collectively, the experimentation implicates TFPI as a conserved regulator of invasive/EVT cell development, uterine spiral artery remodeling, and hemostasis at the maternal–fetal interface.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Yong Pu ◽  
Jeremy Gingrich ◽  
Almudena Veiga-Lopez

A novel 3D microfluidic system for placenta trophoblast cell invasion and cell-to-cell interaction studies under dynamic environment conditions.


2012 ◽  
Vol 124 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Pengfei Li ◽  
Wei Guo ◽  
Leilei Du ◽  
Junli Zhao ◽  
Yaping Wang ◽  
...  

PE (pre-eclampsia), a pregnancy-specific disorder, is characterized by increased trophoblast cell death and deficient trophoblast invasion and reduced trophoblast-mediated remodelling of spiral arteries. The present study was performed to determine the function of miR-29b (microRNA-29b) in trophoblast cells and its underlying role in the pathogenesis of PE. The prediction of miR-29b target genes was performed using computer-based programs, including Targetscan, Pictar and miRBase. The function of these target genes was analysed further by gene ontology (GO). The effects of miR-29b on apoptosis, and invasion and angiogenesis of trophoblast cell lines (HTR-8/SVneo, BeWo and JAR) were examined by flow cytometry and Matrigel assay respectively. We found that miR-29b induced apoptosis and inhibited invasion and angiogenesis of trophoblast cells. Further studies confirmed that miR-29b regulated the expression of MCL1 (myeloid cell leukaemia sequence 1), MMP2 (encoding matrix metallproteinase 2), VEGFA (vascular endothelial growth factor A) and ITGB1 (integrin β1) genes by directly binding to their 3′-UTRs (untranslated regions). Moreover, we identified that there was an inverse correlation between miR-29b and its target genes in subjects with PE. Taken together, these findings support a novel role for miR-29b in invasion, apoptosis and angiogenesis of trophoblast cells, and miR-29b may become a new potential therapeutic target for PE.


Placenta ◽  
2003 ◽  
Vol 24 (10) ◽  
pp. 929-940 ◽  
Author(s):  
U von Rango ◽  
C.A Krusche ◽  
S Kertschanska ◽  
J Alfer ◽  
P Kaufmann ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (12) ◽  
pp. 5596-5605 ◽  
Author(s):  
HaiBin Kuang ◽  
Qi Chen ◽  
Ying Zhang ◽  
Li Zhang ◽  
HongYing Peng ◽  
...  

Abstract Well-controlled trophoblast invasion into uterine decidua is a critical process for the normal development of placenta, which is tightly regulated by various factors produced within the trophoblast-endometrial microenvironment. CXCL14 is involved in tumor growth and metastasis, and its expression in placenta is temporally regulated during pregnancy. However, the role of CXCL14 in trophoblast function during human pregnancy is not clear. In this study, by using RT-PCR through human pregnancy, we found that CXCL14 was selectively expressed at early but not late pregnancy. Immunostaining revealed that CXCL14 proteins were strongly expressed in villous cytotrophoblasts and moderately in decidualized stromal cells but very weakly in syncytiotrophoblasts and extravillous trophoblasts. The effect of CXCL14 on trophoblast invasion were examined by using human villous explants cultured on Matrigel and further proved by invasion and migration assay of primary trophoblast cells and trophoblast cell line HTR-8/SVneo. Our data showed that CXCL14 significantly inhibited outgrowth of villous explant in vitro; this effect is due to suppression of trophoblast invasion and migration through regulating matrix metalloproteinases activities, whereas the trophoblast proliferation was not affected. Moreover, because a receptor for CXCL14 has not been identified, we performed further cell-specific CXCL14 binding activities with regard to different cell types within the maternal-fetal interface. Our data revealed that CXCL14 could specifically bind to trophoblast cells but not decidual cells from the maternal-fetal interface. These results suggest that CXCL14 plays an important role in regulating trophoblast invasion through an autocrine/paracrine manner during early pregnancy.


Sign in / Sign up

Export Citation Format

Share Document