microRNA-29b contributes to pre-eclampsia through its effects on apoptosis, invasion and angiogenesis of trophoblast cells

2012 ◽  
Vol 124 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Pengfei Li ◽  
Wei Guo ◽  
Leilei Du ◽  
Junli Zhao ◽  
Yaping Wang ◽  
...  

PE (pre-eclampsia), a pregnancy-specific disorder, is characterized by increased trophoblast cell death and deficient trophoblast invasion and reduced trophoblast-mediated remodelling of spiral arteries. The present study was performed to determine the function of miR-29b (microRNA-29b) in trophoblast cells and its underlying role in the pathogenesis of PE. The prediction of miR-29b target genes was performed using computer-based programs, including Targetscan, Pictar and miRBase. The function of these target genes was analysed further by gene ontology (GO). The effects of miR-29b on apoptosis, and invasion and angiogenesis of trophoblast cell lines (HTR-8/SVneo, BeWo and JAR) were examined by flow cytometry and Matrigel assay respectively. We found that miR-29b induced apoptosis and inhibited invasion and angiogenesis of trophoblast cells. Further studies confirmed that miR-29b regulated the expression of MCL1 (myeloid cell leukaemia sequence 1), MMP2 (encoding matrix metallproteinase 2), VEGFA (vascular endothelial growth factor A) and ITGB1 (integrin β1) genes by directly binding to their 3′-UTRs (untranslated regions). Moreover, we identified that there was an inverse correlation between miR-29b and its target genes in subjects with PE. Taken together, these findings support a novel role for miR-29b in invasion, apoptosis and angiogenesis of trophoblast cells, and miR-29b may become a new potential therapeutic target for PE.

2019 ◽  
Vol 15 (6) ◽  
pp. 602-623 ◽  
Author(s):  
Ahmed M. Abdelaziz ◽  
Sarah Diab ◽  
Saiful Islam ◽  
Sunita K.C. Basnet ◽  
Benjamin Noll ◽  
...  

Background:Aberrant expression of eukaryotic translation initiation factor 4E (eIF4E) is common in many types of cancer including acute myeloid leukaemia (AML). Phosphorylation of eIF4E by MAPK-interacting kinases (Mnks) is essential for the eIF4E-mediated oncogenic activity. As such, the pharmacological inhibition of Mnks can be an effective strategy for the treatment of cancer.Methods:A series of N-phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine derivatives was designed and synthesised. The Mnk inhibitory activity of these derivatives as well as their anti-proliferative activity against MV4-11 AML cells was determined.Results:These compounds were identified as potent Mnk2 inhibitors. Most of them demonstrated potent anti-proliferative activity against MV4-11 AML cells. The cellular mechanistic studies of the representative inhibitors revealed that they reduced the level of phosphorylated eIF4E and induced apoptosis by down-regulating the anti-apoptotic protein myeloid cell leukaemia 1 (Mcl-1) and by cleaving poly(ADP-ribose)polymerase (PARP). The lead compound 7k possessed desirable pharmacokinetic properties and oral bioavailability.Conclusion:This work proposes that exploration of the structural diversity in the context of Nphenyl- 4-(1H-pyrrol-3-yl)pyrimidin-2-amine would offer potent and selective Mnk inhibitors.


Immunology ◽  
2016 ◽  
Vol 149 (1) ◽  
pp. 62-73 ◽  
Author(s):  
Kristine L. Holm ◽  
Randi L. Indrevaer ◽  
June Helen Myklebust ◽  
Arne Kolstad ◽  
Jan Øivind Moskaug ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (12) ◽  
pp. 5596-5605 ◽  
Author(s):  
HaiBin Kuang ◽  
Qi Chen ◽  
Ying Zhang ◽  
Li Zhang ◽  
HongYing Peng ◽  
...  

Abstract Well-controlled trophoblast invasion into uterine decidua is a critical process for the normal development of placenta, which is tightly regulated by various factors produced within the trophoblast-endometrial microenvironment. CXCL14 is involved in tumor growth and metastasis, and its expression in placenta is temporally regulated during pregnancy. However, the role of CXCL14 in trophoblast function during human pregnancy is not clear. In this study, by using RT-PCR through human pregnancy, we found that CXCL14 was selectively expressed at early but not late pregnancy. Immunostaining revealed that CXCL14 proteins were strongly expressed in villous cytotrophoblasts and moderately in decidualized stromal cells but very weakly in syncytiotrophoblasts and extravillous trophoblasts. The effect of CXCL14 on trophoblast invasion were examined by using human villous explants cultured on Matrigel and further proved by invasion and migration assay of primary trophoblast cells and trophoblast cell line HTR-8/SVneo. Our data showed that CXCL14 significantly inhibited outgrowth of villous explant in vitro; this effect is due to suppression of trophoblast invasion and migration through regulating matrix metalloproteinases activities, whereas the trophoblast proliferation was not affected. Moreover, because a receptor for CXCL14 has not been identified, we performed further cell-specific CXCL14 binding activities with regard to different cell types within the maternal-fetal interface. Our data revealed that CXCL14 could specifically bind to trophoblast cells but not decidual cells from the maternal-fetal interface. These results suggest that CXCL14 plays an important role in regulating trophoblast invasion through an autocrine/paracrine manner during early pregnancy.


2017 ◽  
Author(s):  
Yue Chen ◽  
Hui Zhang ◽  
Fang Han ◽  
Lei Yue ◽  
Chunxiao Qiao ◽  
...  

AstractThe mammalian placenta is a remarkable organ. It serves as the interface between the mother and the fetus. Proper invasion of trophoblast cells into the maternal decidua is required for a successful pregnancy. Previous studies have found that the adhesion molecule integrin β4 plays important roles during trophoblast cell invasion. Here, we found that the overall birth rate of the MARVELD1 knockout mouse is much lower than that of the wild-type mouse (P<0.001). In E18.5 MARVELD1 knockout mice, we observed an over-invasion of trophoblast cells, and indeed, the pregnant mice had a partial placenta accreta phenotype. The HTR8/SVneo cell line was used as an in vitro model to elucidate the underlying mechanisms of MARVELD1-mediated trophoblast invasion. We detected a diminished expression of integrin β4 upon the downregulation of MARVELD1 and enhanced migration and invasive abilities of trophoblast cells both in vivo and in vitro. The integrin β4 rescue assay also supported the results. In conclusion, this study found that MARVELD1 mediated the invasion of trophoblast cells via regulating the expression of integrin β4.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Bin He ◽  
Qi Yue Li ◽  
Yuan Yuan Wu ◽  
Jing Ling Ruan ◽  
Xiao Ming Teng ◽  
...  

Abstract Background Trophoblast cells are required for the establishment of pregnancy and fetal development. Apoptosis is an essential feature for trophoblast invasion. Uncontrolled trophoblast apoptosis is related to some complicate pregnancies. Oxidative stress (OS) is an important inducer of trophoblast apoptosis. Cyclosporin A (CsA) has been shown to promote the activity of trophoblast cells and reduce OS-induced oxidative injury. We investigated the role and mechanism of CsA in oxidative stress-induced trophoblast cell apoptosis. Methods JEG-3 cells were cocultured with H2O2 and CsA. Cell viability and morphology were measured by MTT assay and DAPI staining. Cell apoptosis was tested with annexin V/PI staining. The expression of Bcl-2-associated X protein (Bax), B-cell lymphoma/leukemia-2 (Bcl-2), cleaved poly (ADP-ribose) polymerase (PARP) and pro-caspase-3 was assayed by western blotting. The protein expression and phosphorylation of p53 and mitogen-activated protein kinase (MAPK) kinases (JNK, ERK1/2 and p38) were examined by western blotting. Results CsA increased the viability, alleviated morphological injury and reduced cell apoptosis of the H2O2-treated JEG-3 cells. CsA also attenuated the activation of p53, decreased the expression of Bax and cleavage of PARP, and increased the expression of Bcl-2 and pro-caspase-3 in the JEG-3 treated with H2O2. Furthermore, CsA reduced the activation of JNK and P38 but had no significant effect on the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in the H2O2-treated JEG-3 cells. Promoting the activation of JNK and p38 impaired the protective effect of CsA on OS-induced trophoblast apoptosis. Conclusions These results suggested that CsA protected trophoblast cells from OS-induced apoptosis via the inhibition of the p53 and JNK/p38 signaling pathways.


Reproduction ◽  
2011 ◽  
Vol 141 (4) ◽  
pp. 501-509 ◽  
Author(s):  
D Ghosh ◽  
A R Najwa ◽  
M A Khan ◽  
J Sengupta

Blastocyst implantation in the rhesus monkey is inhibited by administration of antibody against vascular endothelial growth factor (VEGF) A during peri-implantation period with no change in the circulatory concentrations of estradiol, progesterone, and VEGF. In this study, we have investigated the effect of administration of a MAB to VEGFA on days 5 and 10 after ovulation upon the mRNA expression, immunopositive protein expression, and immunohistological localization of IGF2, IGF binding protein 1 (IGFBP1) and matrix metalloproteinases (MMPs) 2 and 9 in the implantation-stage endometrium collected on day 13 after ovulation from fecund cycles of rhesus monkeys. The comparison between isotype-matched IgG (control; n=8)- and VEGF antibody (VEGF Mab; n=8)-treated animals revealed higher (P<0.05) IGF2 in lacunar and villous syncytiotrophoblasts, trophoblast cell columns, migrating extravillous trophoblast cells, and endovascular trophoblast cells in control animals, but with no change in the various cell types of maternal endometrium between the two groups. No change in IGFBP1 expression in the endometrium was observed between the two groups. MMPs 2 and 9 were detected in syncytiotrophoblast in lacunae and villi, trophoblast cell columns, and extravillous trophoblast cells in control samples. MMP9 transcript expression in maternal endometrium and its immunopositivity in endometrial stroma and trophoblast cells were lower (P<0.05) with no change in MMP2 level in VEGF Mab-exposed samples compared with those in control samples. A functional network involving VEGF, IGF2, and MMP9 in early placental trophoblast cells and maternal endometrium appears to be important for normal placentation.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A747-A748
Author(s):  
Cuiping Hu ◽  
Junhao Yan

Abstract The adequate invasion of extravillous trophoblast cells (EVTs) is indispensable for the implantation of embryos and subsequent remodeling of uterine spiral arteries in early human gestation. Bone morphogenetic protein 2 (BMP2), which is abundantly expressed at the maternal-fetal interface, has been shown to promote the human EVT invasion process (1). Integrin switching (i.e., a switch from α6β4 to αvβ3) plays essential roles in cell-extracellular matrix adhesion and has been reported to influence EVT migration and invasion (2). Moreover, integrin β3 has been found to promote the adhesion, invasion, and migration abilities of embryonic trophoblasts (3). However, whether integrin β3 participates in BMP2 signaling and mediates BMP2-increased-human trophoblast invasion remains unknown. The purpose of our study was to explore the effects of BMP2 on integrin αvβ3 expression and the possible mediation role of integrin β3 in BMP2-regulated human trophoblast invasion. We used immortalized human trophoblast cell line (HTR8/SVneo) and primary human extravillous trophoblast cells (EVTs) isolated from first-trimester villi as study models. RT-qPCR and Western blot assay were respectively utilized to detect the messenger RNA and protein levels of intergrin αv and β3. The function of the target protein was studied by siRNA knockdown, and the trophoblast invasion ability was checked by Matrigel-coated transwell invasion assays. Our results demonstrated that the mRNA and protein levels of integrin β3, rather than integrin αv, were up-regulated after BMP2 treatment in HTR8/SVneo and primary EVT cells. Importantly, siRNA-mediated down-regulation of integrin β3 significantly inhibited basal and BMP2-induced HTR8/SVneo cell invasionas measured by transwell invasion assay. In conclusion, we findings support that BMP2 promotes human trophoblast cell invasion by up-regulating integrin β3 expression, benefiting the in-depth understanding of the pro-invasive effect of BMP2 on human trophoblasts during early pregnancy. Reference: (1) Hong-Jin Zhao et al., Cell Death Dis 2018;9:174. (2) Damsky, C.H. et al, Development 1994; 120, 3657-3666. (3) Dong-Mei He et al., Reproduction 2019;157:423-430.


2021 ◽  
pp. 67-78
Author(s):  
H GUO ◽  
Y WANG ◽  
W JIA ◽  
L LIU

Preeclampsia (PE) is a major cause of the pregnancy morbidity and mortality over the world. Disorganized placentation caused by trophoblast cell abnormity is one of main risk factors to induce PE. MiR-133a-3p has been shown to contain regulatory effects on oxidative stress in the cardiomyocytes. But the effects of miR-133a-3p on oxidative stress-induced apoptosis in the trophoblast cells remain unknown. In this study, trophoblast HTR-8/SVneo cells were transfected with miR-133a-3p mimics and inhibitor. H2O2 (250 μM) treatment of cells was adopted to induce oxidative stress. A series of typical molecular and cellular experiments was subsequently performed in order to investigate this issue. It was found that miR-133a-3p overexpression attenuated the oxidative stress induced by H2O2 through reduced ROS and MDA levels and enhanced antioxidase activities in the trophoblast cells. Overexpressed miR-133a-3p was shown to relieve the oxidative stress-induced apoptosis of HTR-8/SVneo cells. At molecular levels, a direct binding effect of miR-133a-3p on BACH1 was verified. Moreover, miR-133a-3p overexpression also enhanced BACH1 downstream Nrf2/HO-1 signaling to activate antioxidant genes. It is collectively demonstrated that miR-133a-3p can relieve the oxidative stress-induced apoptosis in the trophoblast cells through the BACH1/Nrf2/HO-1 signaling pathway via targeting BACH1 directly. This regulatory mechanism of miR-133a-3p in the trophoblast cells under oxidative stress may give a new perspective for oxidative stress-induced trophoblast cell abnormality and be useful to study more pathological mechanisms of PE.


2005 ◽  
Vol 392 (2) ◽  
pp. 335-344 ◽  
Author(s):  
Sujoy Bhattacharya ◽  
Ramesh M. Ray ◽  
Leonard R. Johnson

Activation of STAT3 (signal transducer and activator of transcription 3) plays a crucial role in cell survival and proliferation. The aim of the present study was to clarify the role of STAT3 signalling in the protection of polyamine-depleted intestinal epithelial cells against TNF-α (tumour necrosis factor-α)-induced apoptosis. Polyamine depletion by DFMO (α-difluoromethylornithine) caused phosphorylation of STAT3 at Tyr-705 and Ser-727. Phospho-Tyr-705 STAT3 was immunolocalized at the cell periphery and nucleus, whereas phospho-Ser-727 STAT3 was predominantly detected in the nucleus of polyamine-depleted cells. Sustained phosphorylation of STAT3 at tyrosine residues was observed in polyamine-depleted cells after exposure to TNF-α. Inhibition of STAT3 activation by AG490 or cell-membrane-permeant inhibitory peptide (PpYLKTK; where pY represents phospho-Tyr) increased the sensitivity of polyamine-depleted cells to apoptosis. Expression of DN-STAT3 (dominant negative-STAT3) completely eliminated the protective effect of DFMO against TNF-α-induced apoptosis. Polyamine depletion increased mRNA and protein levels for Bcl-2, Mcl-1 (myeloid cell leukaemia-1) and c-IAP2 (inhibitor of apoptosis protein-2). Significantly higher levels of Bcl-2 and c-IAP2 proteins were observed in polyamine-depleted cells before and after 9 h of TNF-α treatment. Inhibition of STAT3 by AG490 and DN-STAT3 decreased Bcl-2 promoter activity. DN-STAT3 decreased mRNA and protein levels for Bcl-2, Mcl-1 and c-IAP2 in polyamine-depleted cells. siRNA (small interfering RNA)-mediated inhibition of Bcl-2, Mcl-1 and c-IAP2 protein levels increased TNF-α-induced apoptosis. DN-STAT3 induced the activation of caspase-3 and PARP [poly(ADP-ribose) polymerase] cleavage in polyamine-depleted cells. These results suggest that activation of STAT3 in response to polyamine depletion increases the transcription and subsequent expression of anti-apoptotic Bcl-2 and IAP family proteins and thereby promotes survival of cells against TNF-α-induced apoptosis.


2015 ◽  
Vol 29 (7) ◽  
pp. 1037-1054 ◽  
Author(s):  
Lorenza Pasqualini ◽  
Huajie Bu ◽  
Martin Puhr ◽  
Narisu Narisu ◽  
Johannes Rainer ◽  
...  

Abstract The normal prostate as well as early stages and advanced prostate cancer (PCa) require a functional androgen receptor (AR) for growth and survival. The recent discovery of microRNAs (miRNAs) as novel effector molecules of AR disclosed the existence of an intricate network between AR, miRNAs and downstream target genes. In this study DUCaP cells, characterized by high content of wild-type AR and robust AR transcriptional activity, were chosen as the main experimental model. By integrative analysis of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray expression profiling data, miRNAs putatively bound and significantly regulated by AR were identified. A direct AR regulation of miR-22, miR-29a, and miR-17-92 cluster along with their host genes was confirmed. Interestingly, endogenous levels of miR-22 and miR-29a were found to be reduced in PCa cells expressing AR. In primary tumor samples, miR-22 and miR-29a were less abundant in the cancerous tissue compared with the benign counterpart. This specific expression pattern was associated with a differential DNA methylation of the genomic AR binding sites. The identification of laminin gamma 1 (LAMC1) and myeloid cell leukemia 1 (MCL1) as direct targets of miR-22 and miR-29a, respectively, suggested a tumor-suppressive role of these miRNAs. Indeed, transfection of miRNA mimics in PCa cells induced apoptosis and diminished cell migration and viability. Collectively, these data provide additional information regarding the complex regulatory machinery that guides miRNAs activity in PCa, highlighting an important contribution of miRNAs in the AR signaling.


Sign in / Sign up

Export Citation Format

Share Document