scholarly journals Building a tRNA thermometer to estimate microbial adaptation to temperature

2020 ◽  
Vol 48 (21) ◽  
pp. 12004-12015
Author(s):  
Emre Cimen ◽  
Sarah E Jensen ◽  
Edward S Buckler

Abstract Because ambient temperature affects biochemical reactions, organisms living in extreme temperature conditions adapt protein composition and structure to maintain biochemical functions. While it is not feasible to experimentally determine optimal growth temperature (OGT) for every known microbial species, organisms adapted to different temperatures have measurable differences in DNA, RNA and protein composition that allow OGT prediction from genome sequence alone. In this study, we built a ‘tRNA thermometer’ model using tRNA sequence to predict OGT. We used sequences from 100 archaea and 683 bacteria species as input to train two Convolutional Neural Network models. The first pairs individual tRNA sequences from different species to predict which comes from a more thermophilic organism, with accuracy ranging from 0.538 to 0.992. The second uses the complete set of tRNAs in a species to predict optimal growth temperature, achieving a maximum ${r^2}$ of 0.86; comparable with other prediction accuracies in the literature despite a significant reduction in the quantity of input data. This model improves on previous OGT prediction models by providing a model with minimum input data requirements, removing laborious feature extraction and data preprocessing steps and widening the scope of valid downstream analyses.

2020 ◽  
Author(s):  
Emre Cimen ◽  
Sarah E. Jensen ◽  
Edward S. Buckler

ABSTRACTBecause ambient temperature affects biochemical reactions, organisms living in extreme temperature conditions adapt protein composition and structure to maintain biochemical functions. While it is not feasible to experimentally determine optimal growth temperature (OGT) for every known microbial species, organisms adapted to different temperatures have measurable differences in DNA, RNA, and protein composition that allow OGT prediction from genome sequence alone. In this study, we built a model using tRNA sequence to predict OGT. We used tRNA sequences from 100 archaea and 683 bacteria species as input to train two Convolutional Neural Network models. The first pairs individual tRNA sequences from different species to predict which comes from a more thermophilic organism, with accuracy ranging from 0.538 to 0.992. The second uses the complete set of tRNAs in a species to predict optimal growth temperature, achieving a maximum r2 of 0.86; comparable with other prediction accuracies in the literature despite a significant reduction in the quantity of input data. This model improves on previous OGT prediction models by providing a model with minimum input data requirements, removing laborious feature extraction and data preprocessing steps, and widening the scope of valid downstream analyses.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Cristina Mihaescu ◽  
Daniel Dunea ◽  
Adrian Gheorghe Bășa ◽  
Loredana Neagu Frasin

Phomopsis juglandina (Sacc.) Höhn., which is the conidial state of Diaporthe juglandina (Fuckel) Nitschke, and the main pathogen causing the dieback of branches and twigs of walnut was recently detected in many orchards from Romania. The symptomatological, morphological, ultrastructural, and cultural characteristics, as well as the pathogenicity of an isolate of this lignicolous fungus, were described and illustrated. The optimum periods for infection, under the conditions prevailing in Southern Romania, mainly occur in the spring (April) and autumn months (late September-beginning of October). Strong inverse correlations (p < 0.001) were found between potential evapotranspiration and lesion lengths on walnut branches in 2019. The pathogen forms two types of phialospores: alpha and beta; the role of beta phialospores is not well known in pathogenesis. In Vitro, the optimal growth temperature of mycelial hyphae was in the range of 22–26 °C, and the optimal pH is 4.4–7. This pathogen should be monitored continuously due to its potential for damaging infestations of intensive plantations.


Author(s):  
Byunghyun Kang ◽  
Cheol Choi ◽  
Daeun Sung ◽  
Seongho Yoon ◽  
Byoung-Ho Choi

In this study, friction tests are performed, via a custom-built friction tester, on specimens of natural rubber used in automotive suspension bushings. By analyzing the problematic suspension bushings, the eleven candidate factors that influence squeak noise are selected: surface lubrication, hardness, vulcanization condition, surface texture, additive content, sample thickness, thermal aging, temperature, surface moisture, friction speed, and normal force. Through friction tests, the changes are investigated in frictional force and squeak noise occurrence according to various levels of the influencing factors. The degree of correlation between frictional force and squeak noise occurrence with the factors is determined through statistical tests, and the relationship between frictional force and squeak noise occurrence based on the test results is discussed. Squeak noise prediction models are constructed by considering the interactions among the influencing factors through both multiple logistic regression and neural network analysis. The accuracies of the two prediction models are evaluated by comparing predicted and measured results. The accuracies of the multiple logistic regression and neural network models in predicting the occurrence of squeak noise are 88.2% and 87.2%, respectively.


2005 ◽  
Vol 330 (2) ◽  
pp. 357-360 ◽  
Author(s):  
Hector Musto ◽  
Hugo Naya ◽  
Alejandro Zavala ◽  
Hector Romero ◽  
Fernando Alvarez-Valin ◽  
...  

2012 ◽  
Vol 6-7 ◽  
pp. 1055-1060 ◽  
Author(s):  
Yang Bing ◽  
Jian Kun Hao ◽  
Si Chang Zhang

In this study we apply back propagation Neural Network models to predict the daily Shanghai Stock Exchange Composite Index. The learning algorithm and gradient search technique are constructed in the models. We evaluate the prediction models and conclude that the Shanghai Stock Exchange Composite Index is predictable in the short term. Empirical study shows that the Neural Network models is successfully applied to predict the daily highest, lowest, and closing value of the Shanghai Stock Exchange Composite Index, but it can not predict the return rate of the Shanghai Stock Exchange Composite Index in short terms.


2006 ◽  
Vol 347 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Héctor Musto ◽  
Hugo Naya ◽  
Alejandro Zavala ◽  
Héctor Romero ◽  
Fernando Alvarez-Valín ◽  
...  

Author(s):  
G. A. Rekha Pai ◽  
G. A. Vijayalakshmi Pai

Industrial bankruptcy is a rampant problem which does not occur overnight and when it occurs can cause acute financial embarrassment to Governments and financial institutions as well as threaten the very viability of the firms. It is therefore essential to help industries identify the impending trouble early. Several statistical and soft computing based bankruptcy prediction models that make use of financial ratios as indicators have been proposed. Majority of these models make use of a selective set of financial ratios chosen according to some appropriate criteria framed by the individual investigators. In contrast, this study considers any number of financial ratios irrespective of the industrial category and size and makes use of Principal Component Analysis to extract their principal components, to be used as predictors, thereby dispensing with the cumbersome selection procedures used by its predecessors. An Evolutionary Neural Network (ENN) and a Backpropagation Neural Network with Levenberg Marquardt’s training rule (BPN) have been employed as classifiers and their performance has been compared using Receiver Operating Characteristics (ROC) analyses. Termed PCA-ENN and PCA-BPN models, the predictive potential of the two models have been analyzed over a financial database (1997-2000) pertaining to 34 sick and 38 non sick Indian manufacturing companies, with 21 financial ratios as predictor variables.


1997 ◽  
Vol 60 (8) ◽  
pp. 998-1000 ◽  
Author(s):  
NORMA L. HEREDIA ◽  
GERARDO A. GARCÍA ◽  
RAMIRO LUÉVANOS ◽  
RONALD G. LABBÉ ◽  
J. SANTOS GARCÍA-ALVARADO

The degree of heat resistance conferred on Clostridium perfringens by a heat shock, the kinetics of this development, and its duration were determined. A sublethal heat shock at 55°C for 30 min increased the heat tolerance of vegetative cells at least two- to threefold. The acquired tolerance was maintained for 2 h after the heat shock treatment. Heat shock applied for the first hour of incubation produced spores more tolerant to heat than the spores of the control. Acquired thermotolerance is of importance in the case of this organism because of its inherently high optimal growth temperature.


Author(s):  
Steffen Becker ◽  
◽  
Vishy Karri ◽  

Predictive models were built using neural networks for hydrogen flow rate, electrolyzer system-efficiency and stack-efficiency respectively. A comprehensive experimental database forms the foundation for the predictive models. It is argued that, due to the high costs associated with the hydrogen measuring equipment; these reliable predictive models can be implemented as virtual sensors. These models can also be used online for monitoring and safety of hydrogen equipment. The quantitative accuracy of the predictive models is appraised using statistical techniques. These mathematical models are found to be reliable predictive tools with an excellent accuracy of ±3% compared with experimental values. The predictive nature of these models did not show any significant bias to either over prediction or under prediction. These predictive models, built on a sound mathematical and quantitative basis, can be seen as a step towards establishing hydrogen performance prediction models as generic virtual sensors for wider safety and monitoring applications.


Sign in / Sign up

Export Citation Format

Share Document