scholarly journals Quantitative comparison of within-sample heterogeneity scores for DNA methylation data

2020 ◽  
Vol 48 (8) ◽  
pp. e46-e46 ◽  
Author(s):  
Michael Scherer ◽  
Almut Nebel ◽  
Andre Franke ◽  
Jörn Walter ◽  
Thomas Lengauer ◽  
...  

Abstract DNA methylation is an epigenetic mark with important regulatory roles in cellular identity and can be quantified at base resolution using bisulfite sequencing. Most studies are limited to the average DNA methylation levels of individual CpGs and thus neglect heterogeneity within the profiled cell populations. To assess this within-sample heterogeneity (WSH) several window-based scores that quantify variability in DNA methylation in sequencing reads have been proposed. We performed the first systematic comparison of four published WSH scores based on simulated and publicly available datasets. Moreover, we propose two new scores and provide guidelines for selecting appropriate scores to address cell-type heterogeneity, cellular contamination and allele-specific methylation. Most of the measures were sensitive in detecting DNA methylation heterogeneity in these scenarios, while we detected differences in susceptibility to technical bias. Using recently published DNA methylation profiles of Ewing sarcoma samples, we show that DNA methylation heterogeneity provides information complementary to the DNA methylation level. WSH scores are powerful tools for estimating variance in DNA methylation patterns and have the potential for detecting novel disease-associated genomic loci not captured by established statistics. We provide an R-package implementing the WSH scores for integration into analysis workflows.

2020 ◽  
Vol 12 (8) ◽  
pp. 1482-1492
Author(s):  
Xin Wu ◽  
David A Galbraith ◽  
Paramita Chatterjee ◽  
Hyeonsoo Jeong ◽  
Christina M Grozinger ◽  
...  

Abstract Parent-of-origin methylation arises when the methylation patterns of a particular allele are dependent on the parent it was inherited from. Previous work in honey bees has shown evidence of parent-of-origin-specific expression, yet the mechanisms regulating such pattern remain unknown in honey bees. In mammals and plants, DNA methylation is known to regulate parent-of-origin effects such as genomic imprinting. Here, we utilize genotyping of reciprocal European and Africanized honey bee crosses to study genome-wide allele-specific methylation patterns in sterile and reproductive individuals. Our data confirm the presence of allele-specific methylation in honey bees in lineage-specific contexts but also importantly, though to a lesser degree, parent-of-origin contexts. We show that the majority of allele-specific methylation occurs due to lineage rather than parent-of-origin factors, regardless of the reproductive state. Interestingly, genes affected by allele-specific DNA methylation often exhibit both lineage and parent-of-origin effects, indicating that they are particularly labile in terms of DNA methylation patterns. Additionally, we re-analyzed our previous study on parent-of-origin-specific expression in honey bees and found little association with parent-of-origin-specific methylation. These results indicate strong genetic background effects on allelic DNA methylation and suggest that although parent-of-origin effects are manifested in both DNA methylation and gene expression, they are not directly associated with each other.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yue Fan ◽  
Tauras P. Vilgalys ◽  
Shiquan Sun ◽  
Qinke Peng ◽  
Jenny Tung ◽  
...  

Abstract Identifying genetic variants that are associated with methylation variation—an analysis commonly referred to as methylation quantitative trait locus (mQTL) mapping—is important for understanding the epigenetic mechanisms underlying genotype-trait associations. Here, we develop a statistical method, IMAGE, for mQTL mapping in sequencing-based methylation studies. IMAGE properly accounts for the count nature of bisulfite sequencing data and incorporates allele-specific methylation patterns from heterozygous individuals to enable more powerful mQTL discovery. We compare IMAGE with existing approaches through extensive simulation. We also apply IMAGE to analyze two bisulfite sequencing studies, in which IMAGE identifies more mQTL than existing approaches.


2019 ◽  
Author(s):  
Yue Fan ◽  
Tauras P. Vilgalys ◽  
Shiquan Sun ◽  
Qinke Peng ◽  
Jenny Tung ◽  
...  

AbstractIdentifying genetic variants that are associated with methylation variation – an analysis commonly referred to as methylation quantitative trait locus (mQTL) mapping -- is important for understanding the epigenetic mechanisms underlying genotype-trait associations. Here, we develop a statistical method, IMAGE, for mQTL mapping in sequencing-based methylation studies. IMAGE properly accounts for the count nature of bisulfite sequencing data and incorporates allele-specific methylation patterns from heterozygous individuals to enable more powerful mQTL discovery. We compare IMAGE with existing approaches through extensive simulation. We also apply IMAGE to analyze two bisulfite sequencing studies, in which IMAGE identifies more mQTL than existing approaches.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Suhua Feng ◽  
Zhenhui Zhong ◽  
Ming Wang ◽  
Steven E. Jacobsen

Abstract Background 5′ methylation of cytosines in DNA molecules is an important epigenetic mark in eukaryotes. Bisulfite sequencing is the gold standard of DNA methylation detection, and whole-genome bisulfite sequencing (WGBS) has been widely used to detect methylation at single-nucleotide resolution on a genome-wide scale. However, sodium bisulfite is known to severely degrade DNA, which, in combination with biases introduced during PCR amplification, leads to unbalanced base representation in the final sequencing libraries. Enzymatic conversion of unmethylated cytosines to uracils can achieve the same end product for sequencing as does bisulfite treatment and does not affect the integrity of the DNA; enzymatic methylation sequencing may, thus, provide advantages over bisulfite sequencing. Results Using an enzymatic methyl-seq (EM-seq) technique to selectively deaminate unmethylated cytosines to uracils, we generated and sequenced libraries based on different amounts of Arabidopsis input DNA and different numbers of PCR cycles, and compared these data to results from traditional whole-genome bisulfite sequencing. We found that EM-seq libraries were more consistent between replicates and had higher mapping and lower duplication rates, lower background noise, higher average coverage, and higher coverage of total cytosines. Differential methylation region (DMR) analysis showed that WGBS tended to over-estimate methylation levels especially in CHG and CHH contexts, whereas EM-seq detected higher CG methylation levels in certain highly methylated areas. These phenomena can be mostly explained by a correlation of WGBS methylation estimation with GC content and methylated cytosine density. We used EM-seq to compare methylation between leaves and flowers, and found that CHG methylation level is greatly elevated in flowers, especially in pericentromeric regions. Conclusion We suggest that EM-seq is a more accurate and reliable approach than WGBS to detect methylation. Compared to WGBS, the results of EM-seq are less affected by differences in library preparation conditions or by the skewed base composition in the converted DNA. It may therefore be more desirable to use EM-seq in methylation studies.


2007 ◽  
Vol 67 (18) ◽  
pp. 8511-8518 ◽  
Author(s):  
Kristen H. Taylor ◽  
Robin S. Kramer ◽  
J. Wade Davis ◽  
Juyuan Guo ◽  
Deiter J. Duff ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 634-634 ◽  
Author(s):  
Heng Pan ◽  
Yanwen Jiang ◽  
David Redmond ◽  
Kui Nie ◽  
Leandro Cerchietti ◽  
...  

Abstract Diffuse Large B-cell Lymphoma (DLBCL) is the most common non-Hodgkin lymphoma worldwide. It is a heterogeneous disease in which one third of patients either do not respond to treatment or relapse within five years after chemotherapy. It is unclear whether epigenetic alterations are responsible for B cell lymphomas relapse phenotypes, such as increased aggressiveness and chemoresistance. To investigate how the B cell lymphoma epigenome evolves upon chemotherapy, we used Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) to profile DNA methylation genome-wide in primary matched diagnosis-relapse DLBCL samples. We interrogated 13 pairs of DLBCL diagnosis tumors and their matched relapse samples. In addition, we performed methylation profiling of normal tonsilar B cell subsets (Naïve and germinal center B cells) from two healthy human individuals. ERRBS provided DNA methylation levels at 3-4M CpG sites. When combining methylation levels from all interrogated CpG sites, we observed increased DNA methylation levels at CpG-islands (CGIs; p=3.5e-9, t-test) in DLBCLs compared to normal B cells, and stable or slightly decreasing methylation levels outside of CGIs (>10 kb away from known CGIs; p=0.057, t-test). There was no significant change in average DNA methylation levels from diagnosis to relapse either at CGIs or outside of CGIs. However, when we investigated DNA methylation changes at gene promoters, we identified 107 consistently differentially methylated promoters between diagnosis and relapse (> 10% DNA methylation alteration and p < 0.05, paired t-test). Pathway analysis of the corresponding genes using iPAGE identified several pathways and processes associated with either hyper or hypo-methylated genes in relapse, demonstrating that methylation changes associated with relapse are functionally coherent. For example, several genes with TGF-beta receptor activity displayed lower DNA methylation in relapse. Taking advantage of single CpG resolution and high coverage provided by ERRBS, we then sought to investigate the extent of allele-specific methylation (ASM) levels in normal tissues and DLBCL patients. We found increased ASM levels in DLBCLs compared to normal tissues (p=0.0011, t-test) confirming observations in solid tumors. There was no significant change in ASM levels from diagnosis to relapse (p=0.24, t-test). These results suggest that methylation changes associated with lymphomagenesis might frequently involve one allele only, perhaps due to differential nuclear localization of individual chromosomes. However allele-specific methylation may not play a key role in lymphoma progression. Finally, we investigated whether intra-tumor methylation heterogeneity at diagnosis would predict whether a DLBCL patient would relapse. We quantified intra-tumor methylation heterogeneity using a statistical approach based on the probability that two randomly sampled DNA molecules from the tumor cell populations differ from each other in their methylation pattern. We found decreased intra-sample methylation heterogeneity in DLBCLs compared to normal germinal center B cells (p=1.9e-4, t-test), consistent with the clonal origin of tumors. 12 out of 13 pairs also displayed decreased methylation heterogeneity from diagnosis to relapse, which is also consistent with clonal selection upon chemotherapy treatment. We then performed ERRBS on primary tumors from 8 DLBCL patients who have not relapsed five years after treatment. We found that non-relapse patients displayed significantly lower intra-tumor methylation heterogeneity as compared to that of the relapsed patients (p=0.047, t-test), which suggests that increased epigenetic diversity within a population of tumor cells at diagnosis might fuel the Darwinian evolutionary process underlying relapse. We also looked at genetic clonal heterogeneity based on next-generation sequencing of somatic hypermutation profiles in IGH VDJ sequences, but found no differences between relapsed and not relapsed patients (p=0.22, Wilcoxon test). This suggests that epigenetic heterogeneity plays a more substantial role than clonal heterogeneity in fueling the relapse phenotype. In summary, this study provides the first comprehensive characterization of aberrations in DNA methylation in relapse DLBCLs and identified epigenetic diversity in DLBCLs as a potential predictor of relapse. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Jean S Fain ◽  
Axelle Loriot ◽  
Anna Diacofotaki ◽  
Aurelie Van Tongelen ◽  
Charles De Smet

DNA methylation is an epigenetic mark associated with gene repression. It is now well established that tumor development involves alterations in DNA methylation patterns, which include both gains (hypermethylation) and losses (hypomethylation) of methylation marks in different genomic regions. The mechanisms underlying these two opposite, yet co-existing, alterations in tumors remain unclear. While studying the human MAGEA6/GABRA3 gene locus, we observed that DNA hypomethylation in tumor cells can lead to the activation of a long transcript (CT-GABRA3) that overlaps downstream promoters (GABRQ and GABRA3) and triggers their hypermethylation. Overlapped promoters displayed increases in H3K36me3, a histone mark known to be deposited during progression of the transcription machinery and to stimulate de novo DNA methylation. Consistent with such a processive mechanism, increases in H3K36me3 and DNA methylation were observed over the entire region covered by the CT-GABRA3 overlapping transcript. Importantly, experimental induction of CT-GABRA3 by depletion of DNMT1 DNA methyltransferase, resulted in a similar pattern of increased DNA methylation in the MAGEA6/GABRA3 locus. Bioinformatics analyses in lung cancer datasets identified other genomic loci displaying this process of coupled DNA hypo- and hypermethylation. In several of these loci, DNA hypermethylation affected tumor suppressor genes, e.g. RERG and PTPRO. Together, our work reveals that focal DNA hypomethylation in tumors can indirectly contribute to hypermethylation of nearby promoters through activation of overlapping transcription, and establishes therefore an unsuspected connection between these two opposite epigenetic alterations.


Epigenomics ◽  
2019 ◽  
Vol 11 (15) ◽  
pp. 1679-1692
Author(s):  
Jiang Zhu ◽  
Mu Su ◽  
Yue Gu ◽  
Xingda Zhang ◽  
Wenhua Lv ◽  
...  

Aim: To comprehensively identify allele-specific DNA methylation (ASM) at the genome-wide level. Methods: Here, we propose a new method, called GeneASM, to identify ASM using high-throughput bisulfite sequencing data in the absence of haplotype information. Results: A total of 2194 allele-specific DNA methylated genes were identified in the GM12878 lymphocyte lineage using GeneASM. These genes are mainly enriched in cell cytoplasm function, subcellular component movement or cellular linkages. GM12878 methylated DNA immunoprecipitation sequencing, and methylation sensitive restriction enzyme sequencing data were used to evaluate ASM. The relationship between ASM and disease was further analyzed using the The Cancer Genome Atlas (TCGA) data of lung adenocarcinoma (LUAD), and whole genome bisulfite sequencing data. Conclusion: GeneASM, which recognizes ASM by high-throughput bisulfite sequencing and heterozygous single-nucleotide polymorphisms, provides new perspective for studying genomic imprinting.


Sign in / Sign up

Export Citation Format

Share Document