scholarly journals Ensembl 2021

2020 ◽  
Vol 49 (D1) ◽  
pp. D884-D891 ◽  
Author(s):  
Kevin L Howe ◽  
Premanand Achuthan ◽  
James Allen ◽  
Jamie Allen ◽  
Jorge Alvarez-Jarreta ◽  
...  

Abstract The Ensembl project (https://www.ensembl.org) annotates genomes and disseminates genomic data for vertebrate species. We create detailed and comprehensive annotation of gene structures, regulatory elements and variants, and enable comparative genomics by inferring the evolutionary history of genes and genomes. Our integrated genomic data are made available in a variety of ways, including genome browsers, search interfaces, specialist tools such as the Ensembl Variant Effect Predictor, download files and programmatic interfaces. Here, we present recent Ensembl developments including two new website portals. Ensembl Rapid Release (http://rapid.ensembl.org) is designed to provide core tools and services for genomes as soon as possible and has been deployed to support large biodiversity sequencing projects. Our SARS-CoV-2 genome browser (https://covid-19.ensembl.org) integrates our own annotation with publicly available genomic data from numerous sources to facilitate the use of genomics in the international scientific response to the COVID-19 pandemic. We also report on other updates to our annotation resources, tools and services. All Ensembl data and software are freely available without restriction.

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 737
Author(s):  
Issiaka Bagayoko ◽  
Marcos Giovanni Celli ◽  
Gustavo Romay ◽  
Nils Poulicard ◽  
Agnès Pinel-Galzi ◽  
...  

The rice stripe necrosis virus (RSNV) has been reported to infect rice in several countries in Africa and South America, but limited genomic data are currently publicly available. Here, eleven RSNV genomes were entirely sequenced, including the first corpus of RSNV genomes of African isolates. The genetic variability was differently distributed along the two genomic segments. The segment RNA1, within which clusters of polymorphisms were identified, showed a higher nucleotidic variability than did the beet necrotic yellow vein virus (BNYVV) RNA1 segment. The diversity patterns of both viruses were similar in the RNA2 segment, except for an in-frame insertion of 243 nucleotides located in the RSNV tgbp1 gene. Recombination events were detected into RNA1 and RNA2 segments, in particular in the two most divergent RSNV isolates from Colombia and Sierra Leone. In contrast to BNYVV, the RSNV molecular diversity had a geographical structure with two main RSNV lineages distributed in America and in Africa. Our data on the genetic diversity of RSNV revealed unexpected differences with BNYVV suggesting a complex evolutionary history of the genus Benyvirus.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 259-267 ◽  
Author(s):  
Joachim Altschmied ◽  
Jacqueline Delfgaauw ◽  
Brigitta Wilde ◽  
Jutta Duschl ◽  
Laurence Bouneau ◽  
...  

Abstract The microphthalmia-associated transcription factor (MITF) exists in at least four isoforms. These are generated in higher vertebrates using alternative 5′ exons and promoters from a single gene. Two separate genes (mitf-m and mitf-b), however, are present in different teleost fish species including the poeciliid Xiphophorus, the pufferfishes Fugu rubripes and Tetraodon nigroviridis, and the zebrafish Danio rerio. Fish proteins MITF-m and MITF-b correspond at both the structural and the expression levels to one particular bird/mammalian MITF isoform. In the teleost lineage subfunctionalization of mitf genes after duplication at least 100 million years ago is associated with the degeneration of alternative exons and, probably, regulatory elements and promoters. For example, a remnant of the first exon specific for MITF-m is detected within the pufferfish gene encoding MITF-b. Retracing the evolutionary history of mitf genes in vertebrates uncovered the differential recruitment of new introns specific for either the teleost or the bird/mammalian lineage.


2006 ◽  
Vol 24 (1) ◽  
pp. 146-158 ◽  
Author(s):  
O Thalmann ◽  
A Fischer ◽  
F Lankester ◽  
S Paabo ◽  
L Vigilant

2021 ◽  
Vol 118 (31) ◽  
pp. e2107434118
Author(s):  
Peter R. Grant ◽  
B. Rosemary Grant

Many species of plants, animals, and microorganisms exchange genes well after the point of evolutionary divergence at which taxonomists recognize them as species. Genomes contain signatures of past gene exchange and, in some cases, they reveal a legacy of lineages that no longer exist. But genomic data are not available for many organisms, and particularly problematic for reconstructing and interpreting evolutionary history are communities that have been depleted by extinctions. For these, morphology may substitute for genes, as exemplified by the history of Darwin’s finches on the Galápagos islands of Floreana and San Cristóbal. Darwin and companions collected seven specimens of a uniquely large form of Geospiza magnirostris in 1835. The populations became extinct in the next few decades, partly due to destruction of Opuntia cactus by introduced goats, whereas Geospiza fortis has persisted to the present. We used measurements of large samples of G. fortis collected for museums in the period 1891 to 1906 to test for unusually large variances and skewed distributions of beak and body size resulting from introgression. We found strong evidence of hybridization on Floreana but not on San Cristóbal. The skew is in the direction of the absent G. magnirostris. We estimate introgression influenced 6% of the frequency distribution that was eroded by selection after G. magnirostris became extinct on these islands. The genetic residuum of an extinct species in an extant one has implications for its future evolution, as well as for a conservation program of reintroductions in extinction-depleted communities.


2018 ◽  
Vol 12 (7) ◽  
pp. 1779-1793 ◽  
Author(s):  
Alejandro Palomo ◽  
Anders G. Pedersen ◽  
S. Jane Fowler ◽  
Arnaud Dechesne ◽  
Thomas Sicheritz-Pontén ◽  
...  

Endocrinology ◽  
2009 ◽  
Vol 150 (6) ◽  
pp. 2837-2846 ◽  
Author(s):  
Yeo Reum Lee ◽  
Kenta Tsunekawa ◽  
Mi Jin Moon ◽  
Haet Nim Um ◽  
Jong-Ik Hwang ◽  
...  

Kisspeptin and its receptor GPR54 play important roles in mammalian reproduction and cancer metastasis. Because the KiSS and GPR54 genes have been identified in a limited number of vertebrate species, mainly in mammals, the evolutionary history of these genes is poorly understood. In the present study, we have cloned multiple forms of kisspeptin and GPR54 cDNAs from a variety of vertebrate species. We found that fish have two forms of kisspeptin genes, KiSS-1 and KiSS-2, whereas Xenopus possesses three forms of kisspeptin genes, KiSS-1a, KiSS-1b, and KiSS-2. The nonmammalian KiSS-1 gene was found to be the ortholog of the mammalian KiSS-1 gene, whereas the KiSS-2 gene is a novel form, encoding a C-terminally amidated dodecapeptide in the Xenopus brain. This study is the first to identify a mature form of KiSS-2 product in the brain of any vertebrate. Likewise, fish possess two receptors, GPR54-1 and GPR54-2, whereas Xenopus carry three receptors, GPR54-1a, GPR54-1b, and GPR54-2. Sequence identity and genome synteny analyses indicate that Xenopus GPR54-1a is a human GPR54 ortholog, whereas Xenopus GPR54-1b is a fish GPR54-1 ortholog. Both kisspeptins and GPR54s were abundantly expressed in the Xenopus brain, notably in the hypothalamus, suggesting that these ligand-receptor pairs have neuroendocrine and neuromodulatory roles. Synthetic KiSS-1 and KiSS-2 peptides activated GPR54s expressed in CV-1 cells with different potencies, indicating differential ligand selectivity. These data shed new light on the molecular evolution of the kisspeptin-GPR54 system in vertebrates.


Author(s):  
Weijian Guo ◽  
Di Sun ◽  
Yang Cao ◽  
Linlin Xiao ◽  
Xin Huang ◽  
...  

AbstractRecently diverged taxa are often characterized by high rates of hybridization, which can complicate phylogenetic reconstruction. For this reason, the phylogenetic relationships and evolutionary history of dolphins are still not very well resolved; the question of whether the genera Tursiops and Stenella are monophyletic is especially controversial. Here, we performed re-sequencing of six dolphin genomes and combined them with eight previously published dolphin SRA datasets and six whole-genome datasets to investigate the phylogenetic relationships of dolphins and test the monophyly hypothesis of Tursiops and Stenella. Phylogenetic reconstruction with the maximum likelihood and Bayesian methods of concatenated loci, as well as with coalescence analyses of sliding window trees, produced a concordant and well-supported tree. Our studies support the non-monophyletic status of Tursiops and Stenella because the species referred these genera do not form exclusive monophyletic clades. This suggests that the current taxonomy of both genera might not reflect their evolutionary history and may underestimate their diversity. A four-taxon D-statistic (ABBA-BABA) test, five-taxon DFOIL test, and tree-based PhyloNet analyses all showed extensive gene flow across dolphin species, which could explain the instability in resolving phylogenetic relationship of oceanic dolphins with different and limited markers. This study could be a good case to demonstrate how genomic data can reveal complex speciation and phylogeny in rapidly radiating animal groups.


2018 ◽  
Vol 93 (3) ◽  
Author(s):  
Satoshi Kawato ◽  
Aiko Shitara ◽  
Yuanyuan Wang ◽  
Reiko Nozaki ◽  
Hidehiro Kondo ◽  
...  

ABSTRACT White spot syndrome virus (WSSV) is a crustacean-infecting, double-stranded DNA virus and is the most serious viral pathogen in the global shrimp industry. WSSV is the sole recognized member of the family Nimaviridae, and the lack of genomic data on other nimaviruses has obscured the evolutionary history of WSSV. Here, we investigated the evolutionary history of WSSV by characterizing WSSV relatives hidden in host genomic data. We surveyed 14 host crustacean genomes and identified five novel nimaviral genomes. Comparative genomic analysis of Nimaviridae identified 28 “core genes” that are ubiquitously conserved in Nimaviridae; unexpected conservation of 13 uncharacterized proteins highlighted yet-unknown essential functions underlying the nimavirus replication cycle. The ancestral Nimaviridae gene set contained five baculoviral per os infectivity factor homologs and a sulfhydryl oxidase homolog, suggesting a shared phylogenetic origin of Nimaviridae and insect-associated double-stranded DNA viruses. Moreover, we show that novel gene acquisition and subsequent amplification reinforced the unique accessory gene repertoire of WSSV. Expansion of unique envelope protein and nonstructural virulence-associated genes may have been the key genomic event that made WSSV such a deadly pathogen. IMPORTANCE WSSV is the deadliest viral pathogen threatening global shrimp aquaculture. The evolutionary history of WSSV has remained a mystery, because few WSSV relatives, or nimaviruses, had been reported. Our aim was to trace the history of WSSV using the genomes of novel nimaviruses hidden in host genome data. We demonstrate that WSSV emerged from a diverse family of crustacean-infecting large DNA viruses. By comparing the genomes of WSSV and its relatives, we show that WSSV possesses an expanded set of unique host-virus interaction-related genes. This extensive gene gain may have been the key genomic event that made WSSV such a deadly pathogen. Moreover, conservation of insect-infecting virus protein homologs suggests a common phylogenetic origin of crustacean-infecting Nimaviridae and other insect-infecting DNA viruses. Our work redefines the previously poorly characterized crustacean virus family and reveals the ancient genomic events that preordained the emergence of a devastating shrimp pathogen.


Sign in / Sign up

Export Citation Format

Share Document