scholarly journals A novel reannotation strategy for dissecting DNA methylation patterns of human long intergenic non-coding RNAs in cancers

2014 ◽  
Vol 42 (13) ◽  
pp. 8258-8270 ◽  
Author(s):  
Hui Zhi ◽  
Shangwei Ning ◽  
Xiang Li ◽  
Yuyun Li ◽  
Wei Wu ◽  
...  
2015 ◽  
Vol 12 (5) ◽  
pp. 6568-6576 ◽  
Author(s):  
QI LIAO ◽  
YUNLIANG WANG ◽  
JIA CHENG ◽  
DONGJUN DAI ◽  
XINGYU ZHOU ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii202-ii202
Author(s):  
Harmon Khela ◽  
Sweta Sudhir ◽  
Maria Lugo-Fagundo ◽  
Bachchu Lal ◽  
Hernando Lopez-Bertoni ◽  
...  

Abstract Epigenetic alterations such as DNA methylation and dysregulation of non-coding RNAs (e.g. miRNAs) are found in all types of cancer and are thought to play important roles in tumorigenesis. GBM is characterized by small subsets of cells, referred to as glioma stem cells (GSCs), that display stem-like properties implicated in tumor initiation, therapeutic resistance, and recurrence. DNA methylation patterns are altered in GBM and GSCs and are thought to play critical roles in tumor initiation and propagation. DNA methylation is a reversible process catalyzed, in part, by the ten-eleven translocation (TET) family of enzymes. These enzymes function as deoxygenases that catalyze the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Multiple studies found negative correlations between 5hmC levels and glioma grade and loss of 5hmC correlates with poor prognosis of GBM patients. However, the mechanisms leading to the loss of 5hmC in glioma and the role this phenomenon plays in gliomagenesis remains poorly understood. We found that Sox2 expression decreases TET2 expression and its product 5hmC in GSCs and identified miR-10b-5p as a molecular intermediary of this process. We show that miR-10b-5p expression is high in GBM compared to non-tumor in clinical specimens and high levels of this miRNA correlate with poor patient outcome. Expression of transgenic miR-10b-5p enhanced sphere formation capacity of GSCs and the expression of stem cell markers and drivers. Additionally, using a combination of molecular and biochemical endpoints, we show that miR-10b-5p modifies 5hmC levels by regulating TET2 in GSCs. Finally, we show that repression of miR-10b-5p increases 5hmC levels and inhibits tumor propagation in GBM xenograft models. Taken together, these results present a new molecular mechanism that controls 5hmC and the tumor propagating capacity of GSCs and suggests that miR-10b-5p inhibition and other strategies for enhancing TET2 function can be developed to treat GBM.


2014 ◽  
Vol 1 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Yuanyuan Zhao ◽  
Xuemei Chen

Abstract Cytosine DNA methylation is an epigenetic modification in eukaryotes that maintains genome integrity and regulates gene expression. The DNA methylation patterns in plants are more complex than those in animals, and plants and animals have common as well as distinct pathways in regulating DNA methylation. Recent studies involving genetic, molecular, biochemical and genomic approaches have greatly expanded our knowledge of DNA methylation in plants. The roles of many proteins as well as non-coding RNAs in DNA methylation have been uncovered.


2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vanessa Lakis ◽  
◽  
Rita T. Lawlor ◽  
Felicity Newell ◽  
Ann-Marie Patch ◽  
...  

AbstractHere we report the DNA methylation profile of 84 sporadic pancreatic neuroendocrine tumors (PanNETs) with associated clinical and genomic information. We identified three subgroups of PanNETs, termed T1, T2 and T3, with distinct patterns of methylation. The T1 subgroup was enriched for functional tumors and ATRX, DAXX and MEN1 wild-type genotypes. The T2 subgroup contained tumors with mutations in ATRX, DAXX and MEN1 and recurrent patterns of chromosomal losses in half of the genome with no association between regions with recurrent loss and methylation levels. T2 tumors were larger and had lower methylation in the MGMT gene body, which showed positive correlation with gene expression. The T3 subgroup harboured mutations in MEN1 with recurrent loss of chromosome 11, was enriched for grade G1 tumors and showed histological parameters associated with better prognosis. Our results suggest a role for methylation in both driving tumorigenesis and potentially stratifying prognosis in PanNETs.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Todd R. Robeck ◽  
Zhe Fei ◽  
Ake T. Lu ◽  
Amin Haghani ◽  
Eve Jourdain ◽  
...  

AbstractThe development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wardah Mahmood ◽  
Lars Erichsen ◽  
Pauline Ott ◽  
Wolfgang A. Schulz ◽  
Johannes C. Fischer ◽  
...  

AbstractLINE-1 hypomethylation of cell-free DNA has been described as an epigenetic biomarker of human aging. However, in the past, insufficient differentiation between cellular and cell-free DNA may have confounded analyses of genome-wide methylation levels in aging cells. Here we present a new methodological strategy to properly and unambiguously extract DNA methylation patterns of repetitive, as well as single genetic loci from pure cell-free DNA from peripheral blood. Since this nucleic acid fraction originates mainly in apoptotic, senescent and cancerous cells, this approach allows efficient analysis of aged and cancerous cell-specific DNA methylation patterns for diagnostic and prognostic purposes. Using this methodology, we observe a significant age-associated erosion of LINE-1 methylation in cfDNA suggesting that the threshold of hypomethylation sufficient for relevant LINE-1 activation and consequential harmful retrotransposition might be reached at higher age. We speculate that this process might contribute to making aging the main risk factor for many cancers.


2017 ◽  
Vol 11 (suppl_1) ◽  
pp. S124-S124
Author(s):  
A.A. te Velde ◽  
A.Y. Li Yim ◽  
J.R. de Bruyn ◽  
N.W. Duijvis ◽  
W.J. de Jonge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document