Discovering DNA methylation patterns for long non-coding RNAs associated with cancer subtypes

2017 ◽  
Vol 69 ◽  
pp. 164-170 ◽  
Author(s):  
Xiaoke Ma ◽  
Liang Yu ◽  
Peizhuo Wang ◽  
Xiaofei Yang
2015 ◽  
Vol 12 (5) ◽  
pp. 6568-6576 ◽  
Author(s):  
QI LIAO ◽  
YUNLIANG WANG ◽  
JIA CHENG ◽  
DONGJUN DAI ◽  
XINGYU ZHOU ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii202-ii202
Author(s):  
Harmon Khela ◽  
Sweta Sudhir ◽  
Maria Lugo-Fagundo ◽  
Bachchu Lal ◽  
Hernando Lopez-Bertoni ◽  
...  

Abstract Epigenetic alterations such as DNA methylation and dysregulation of non-coding RNAs (e.g. miRNAs) are found in all types of cancer and are thought to play important roles in tumorigenesis. GBM is characterized by small subsets of cells, referred to as glioma stem cells (GSCs), that display stem-like properties implicated in tumor initiation, therapeutic resistance, and recurrence. DNA methylation patterns are altered in GBM and GSCs and are thought to play critical roles in tumor initiation and propagation. DNA methylation is a reversible process catalyzed, in part, by the ten-eleven translocation (TET) family of enzymes. These enzymes function as deoxygenases that catalyze the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Multiple studies found negative correlations between 5hmC levels and glioma grade and loss of 5hmC correlates with poor prognosis of GBM patients. However, the mechanisms leading to the loss of 5hmC in glioma and the role this phenomenon plays in gliomagenesis remains poorly understood. We found that Sox2 expression decreases TET2 expression and its product 5hmC in GSCs and identified miR-10b-5p as a molecular intermediary of this process. We show that miR-10b-5p expression is high in GBM compared to non-tumor in clinical specimens and high levels of this miRNA correlate with poor patient outcome. Expression of transgenic miR-10b-5p enhanced sphere formation capacity of GSCs and the expression of stem cell markers and drivers. Additionally, using a combination of molecular and biochemical endpoints, we show that miR-10b-5p modifies 5hmC levels by regulating TET2 in GSCs. Finally, we show that repression of miR-10b-5p increases 5hmC levels and inhibits tumor propagation in GBM xenograft models. Taken together, these results present a new molecular mechanism that controls 5hmC and the tumor propagating capacity of GSCs and suggests that miR-10b-5p inhibition and other strategies for enhancing TET2 function can be developed to treat GBM.


2014 ◽  
Vol 1 (2) ◽  
pp. 219-229 ◽  
Author(s):  
Yuanyuan Zhao ◽  
Xuemei Chen

Abstract Cytosine DNA methylation is an epigenetic modification in eukaryotes that maintains genome integrity and regulates gene expression. The DNA methylation patterns in plants are more complex than those in animals, and plants and animals have common as well as distinct pathways in regulating DNA methylation. Recent studies involving genetic, molecular, biochemical and genomic approaches have greatly expanded our knowledge of DNA methylation in plants. The roles of many proteins as well as non-coding RNAs in DNA methylation have been uncovered.


2017 ◽  
Author(s):  
Yun-Ching Chen ◽  
Valer Gotea ◽  
Gennady Margolin ◽  
Laura Elnitski

AbstractRecent evidence shows that mutations in several driver genes can cause aberrant methylation patterns, a hallmark of cancer. In light of these findings, we hypothesized that the landscapes of tumor genomes and epigenomes are tightly interconnected. We measured this relationship using principal component analyses and methylation-mutation associations applied at the nucleotide level and with respect to genome-wide trends. We found a few mutated driver genes were associated with genome-wide patterns of aberrant hypomethylation or CpG island hypermethylation in specific cancer types. We identified associations between 737 mutated driver genes and site-specific methylation changes. Moreover, using these mutation-methylation associations, we were able to distinguish between two uterine and two thyroid cancer subtypes. The driver gene mutation-associated methylation differences between the thyroid cancer subtypes were linked to differential gene expression in JAK-STAT signaling, NADPH oxidation, and other cancer-related pathways. These results establish that driver-gene mutations are associated with methylation alterations capable of shaping regulatory network functions. In addition, the methodology presented here can be used to subdivide tumors into more homogeneous subsets corresponding to their underlying molecular characteristics, which could improve treatment efficacy.Author summaryMutations that alter the function of driver genes by changing DNA nucleotides have been recognized as a key player in cancer progression. Recent evidence showed that DNA methylation, a molecular signature that is used for controlling gene expression and that consists of cytosine residues with attached methyl groups in the context of CG dinucleotides, is also highly dysregulated in cancer and contributes to carcinogenesis. However, whether those methylation alterations correspond to mutated driver genes in cancer remains unclear. In this study, we analyzed 4,302 tumors from 18 cancer types and demonstrated that driver gene mutations are inherently connected with the aberrant DNA methylation landscape in cancer. We showed that those driver gene-associated methylation patterns can classify heterogeneous tumors in a cancer type into homogeneous subtypes and have the potential to influence the genes that contribute to tumor growth. This finding could help us to better understand the fundamental connection between driver gene mutations and DNA methylation alterations in cancer and to further improve the cancer treatment.


2014 ◽  
Vol 42 (13) ◽  
pp. 8258-8270 ◽  
Author(s):  
Hui Zhi ◽  
Shangwei Ning ◽  
Xiang Li ◽  
Yuyun Li ◽  
Wei Wu ◽  
...  

2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)


2021 ◽  
Vol 28 ◽  
pp. 107327482098851
Author(s):  
Zeng-Hong Wu ◽  
Yun Tang ◽  
Yan Zhou

Background: Epigenetic changes are tightly linked to tumorigenesis development and malignant transformation’ However, DNA methylation occurs earlier and is constant during tumorigenesis. It plays an important role in controlling gene expression in cancer cells. Methods: In this study, we determining the prognostic value of molecular subtypes based on DNA methylation status in breast cancer samples obtained from The Cancer Genome Atlas database (TCGA). Results: Seven clusters and 204 corresponding promoter genes were identified based on consensus clustering using 166 CpG sites that significantly influenced survival outcomes. The overall survival (OS) analysis showed a significant prognostic difference among the 7 groups (p<0.05). Finally, a prognostic model was used to estimate the results of patients on the testing set based on the classification findings of a training dataset DNA methylation subgroups. Conclusions: The model was found to be important in the identification of novel biomarkers and could be of help to patients with different breast cancer subtypes when predicting prognosis, clinical diagnosis and management.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Vanessa Lakis ◽  
◽  
Rita T. Lawlor ◽  
Felicity Newell ◽  
Ann-Marie Patch ◽  
...  

AbstractHere we report the DNA methylation profile of 84 sporadic pancreatic neuroendocrine tumors (PanNETs) with associated clinical and genomic information. We identified three subgroups of PanNETs, termed T1, T2 and T3, with distinct patterns of methylation. The T1 subgroup was enriched for functional tumors and ATRX, DAXX and MEN1 wild-type genotypes. The T2 subgroup contained tumors with mutations in ATRX, DAXX and MEN1 and recurrent patterns of chromosomal losses in half of the genome with no association between regions with recurrent loss and methylation levels. T2 tumors were larger and had lower methylation in the MGMT gene body, which showed positive correlation with gene expression. The T3 subgroup harboured mutations in MEN1 with recurrent loss of chromosome 11, was enriched for grade G1 tumors and showed histological parameters associated with better prognosis. Our results suggest a role for methylation in both driving tumorigenesis and potentially stratifying prognosis in PanNETs.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Todd R. Robeck ◽  
Zhe Fei ◽  
Ake T. Lu ◽  
Amin Haghani ◽  
Eve Jourdain ◽  
...  

AbstractThe development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


Sign in / Sign up

Export Citation Format

Share Document