scholarly journals Unique localization of the plastid-specific ribosomal proteins in the chloroplast ribosome small subunit provides mechanistic insights into the chloroplastic translation

2017 ◽  
Vol 45 (14) ◽  
pp. 8581-8595 ◽  
Author(s):  
Tofayel Ahmed ◽  
Jian Shi ◽  
Shashi Bhushan
Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


RNA ◽  
2021 ◽  
pp. rna.079025.121
Author(s):  
Joshua J Black ◽  
Arlen W Johnson

Ribosomes are the universally conserved ribonucleoprotein complexes that synthesize proteins. The two subunits of the eukaryotic ribosome are produced through a quasi-independent assembly-line-like pathway involving the hierarchical actions of numerous trans-acting biogenesis factors and the incorporation of ribosomal proteins. The factors work together to shape the nascent subunits through a series of intermediate states into their functional architectures. The earliest intermediate of the small subunit (SSU or 40S) is the SSU Processome which is subsequently transformed into the pre-40S intermediate. This transformation is, in part, facilitated by the binding of the methyltransferase Bud23. How Bud23 is released from the resultant pre-40S is not known. The ribosomal proteins Rps0, Rps2, and Rps21, termed the Rps0-cluster proteins, and several biogenesis factors are known to bind the pre-40S around the time that Bud23 is released, suggesting that one or more of these factors induce Bud23 release. Here, we systematically examined the requirement of these factors for the release of Bud23 from pre-40S particles. We found that the Rps0-cluster proteins are needed but not sufficient for Bud23 release. The atypical kinase/ATPase Rio2 shares a binding site with Bud23 and is thought to be recruited to pre-40S after the Rps0-cluster proteins. Depletion of Rio2 prevented the release of Bud23 from the pre-40S. More importantly, the addition of recombinant Rio2 to pre-40S particles affinity-purified from Rio2-depleted cells was sufficient for Bud23 release in vitro. The ability of Rio2 to displace Bud23 was independent of nucleotide hydrolysis. We propose a novel role for Rio2 in which its binding to the pre-40S actively displaces Bud23 from the pre-40S, and we suggest a model in which the binding of the Rps0-cluster proteins and Rio2 promote the release of Bud23.


1986 ◽  
Vol 6 (7) ◽  
pp. 2527-2535
Author(s):  
T W McMullin ◽  
R L Hallberg

After a nonlethal but heat shock protein-inducing hyperthermic treatment, ribosomes isolated from Tetrahymena thermophila contained an additional 22-kilodalton protein (p22). When maximally ribosome associated, this protein was found to be on the small subunit in a 1:1 stoichiometric ratio with other ribosomal proteins. Using an antiserum directed against the purified 22-kilodalton protein, we found that non-heat-shocked and heat-shocked cells contain identical amounts of this protein, the only difference being that in the stressed cells p22 is entirely ribosome bound, whereas in the unstressed cells p22 has little or no detectable ribosome association. Because the two-dimensional electrophoretic properties of p22 showed no alterations after heat shock, this change in state of ribosome-p22 interaction does not appear to be caused by a chemical modification of p22. When not strongly ribosome associated, p22 is not found free in the cytoplasm. During that time in heat shock when p22 is first becoming ribosome associated, it is found preferentially on polysomal ribosomes. Subsequently, all ribosomes, whether polysome bound or not, obtain a bound p22. The functional significance of this association is discussed.


1971 ◽  
Vol 125 (4) ◽  
pp. 1091-1107 ◽  
Author(s):  
P J Ford

1. The preparation of ribosomes and ribosomal subunits from Xenopus ovary is described. 2. The yield of once-washed ribosomes (buoyant density in caesium chloride 1.601g·cm-3; 44% RNA, 56% protein by chemical methods) was 10.1mg/g wet wt. of tissue. 3. Buoyant density in caesium chloride and RNA/protein ratios by chemical methods have been determined for ribosome subunits produced by 1.0mm-EDTA or 0.5m-potassium chloride treatment and also for EDTA subunits extracted with 0.5m-, 1.0m- or 1.5m-potassium chloride, 4. Analysis of ribosomal protein on acrylamide gels at pH4.5 in 6m-urea reveals 24 and 26 bands from small and large EDTA subunits respectively. The actual numbers of proteins are greater than this, as many bands are obviously doublets. 5. Analysis of the proteins in the potassium chloride extract and particle fractions showed that some bands are completely and some partially extracted. Taking partial extraction as an indication of possible doublet bands it was found that there were 12 and 20 such bands in the small and large subunits respectively, making totals of 36 and 46 proteins. 6. From the measured protein contents and assuming weight-average molecular weights for the proteins of large and small subunits close to those observed for eukaryote ribosomal proteins it is possible to compute the total numbers of protein molecules per particle. It appears that too few protein bands have been identified on acrylamide gels to account for all the protein in the large subunit, but probably enough for the small subunit.


1975 ◽  
Vol 53 (9) ◽  
pp. 935-942 ◽  
Author(s):  
Nabil Hanna ◽  
Claude Godin

Rat liver ribosomes were dissociated into subunits using EDTA, sodium pyrophosphate, high concentrations of KCl, as well as by incubation with puromycin in presence of 0.5 M KCl. The subunits obtained were analyzed using the density gradient centrifugation technique and their ribosomal proteins were separated by means of two-dimensional polyacrylamide gel electrophoresis. The ribosomal protein patterns of the two subunits isolated using each of the dissociating method were compared to the protein patterns of monosomes prepared by puromycin treatment alone. Our results revealed that the use of chelating agents to dissociate the ribosomes resulted in the loss of some ribosomal proteins from the small subunit. On the other hand, the use of KCl in high concentrations to dissociate the ribsosomes did not appear to cause any major loss of proteins from the ribosomes except for some acidic proteins.


2019 ◽  
Vol 47 (13) ◽  
pp. 6984-7002 ◽  
Author(s):  
Ingrid Rössler ◽  
Julia Embacher ◽  
Benjamin Pillet ◽  
Guillaume Murat ◽  
Laura Liesinger ◽  
...  

Abstract Dedicated chaperones protect newly synthesized ribosomal proteins (r-proteins) from aggregation and accompany them on their way to assembly into nascent ribosomes. Currently, only nine of the ∼80 eukaryotic r-proteins are known to be guarded by such chaperones. In search of new dedicated r-protein chaperones, we performed a tandem-affinity purification based screen and looked for factors co-enriched with individual small subunit r-proteins. We report the identification of Nap1 and Tsr4 as direct binding partners of Rps6 and Rps2, respectively. Both factors promote the solubility of their r-protein clients in vitro. While Tsr4 is specific for Rps2, Nap1 has several interaction partners including Rps6 and two other r-proteins. Tsr4 binds co-translationally to the essential, eukaryote-specific N-terminal extension of Rps2, whereas Nap1 interacts with a large, mostly eukaryote-specific binding surface of Rps6. Mutation of the essential Tsr4 and deletion of the non-essential Nap1 both enhance the 40S synthesis defects of the corresponding r-protein mutants. Our findings highlight that the acquisition of eukaryote-specific domains in r-proteins was accompanied by the co-evolution of proteins specialized to protect these domains and emphasize the critical role of r-protein chaperones for the synthesis of eukaryotic ribosomes.


2020 ◽  
Vol 21 (19) ◽  
pp. 7314
Author(s):  
Hidekazu Iwakawa ◽  
Hiro Takahashi ◽  
Yasunori Machida ◽  
Chiyoko Machida

Leaves of Arabidopsis develop from a shoot apical meristem grow along three (proximal–distal, adaxial–abaxial, and medial–lateral) axes and form a flat symmetric architecture. ASYMMETRIC LEAVES2 (AS2), a key regulator for leaf adaxial–abaxial partitioning, encodes a plant-specific nuclear protein and directly represses the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). How AS2 could act as a critical regulator, however, has yet to be demonstrated, although it might play an epigenetic role. Here, we summarize the current understandings of the genetic, molecular, and cellular functions of AS2. A characteristic genetic feature of AS2 is the presence of a number of (about 60) modifier genes, mutations of which enhance the leaf abnormalities of as2. Although genes for proteins that are involved in diverse cellular processes are known as modifiers, it has recently become clear that many modifier proteins, such as NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10), are localized in the nucleolus. Some modifiers including ribosomal proteins are also members of the small subunit processome (SSUP). In addition, AS2 forms perinucleolar bodies partially colocalizing with chromocenters that include the condensed inactive 45S ribosomal RNA genes. AS2 participates in maintaining CpG methylation in specific exons of ETT/ARF3. NUC1 and RH10 genes are also involved in maintaining the CpG methylation levels and repressing ETT/ARF3 transcript levels. AS2 and nucleolus-localizing modifiers might cooperatively repress ETT/ARF3 to develop symmetric flat leaves. These results raise the possibility of a nucleolus-related epigenetic repression system operating for developmental genes unique to plants and predict that AS2 could be a molecule with novel functions that cannot be explained by the conventional concept of transcription factors.


2020 ◽  
Vol 202 (10) ◽  
Author(s):  
Heather A. Feaga ◽  
Mykhailo Kopylov ◽  
Jenny Kim Kim ◽  
Marko Jovanovic ◽  
Jonathan Dworkin

ABSTRACT When nutrients become scarce, bacteria can enter an extended state of quiescence. A major challenge of this state is how to preserve ribosomes for the return to favorable conditions. Here, we show that the ribosome dimerization protein hibernation-promoting factor (HPF) functions to protect essential ribosomal proteins. Ribosomes isolated from strains lacking HPF (Δhpf) or encoding a mutant allele of HPF that binds the ribosome but does not mediate dimerization were substantially depleted of the small subunit proteins S2 and S3. Strikingly, these proteins are located directly at the ribosome dimer interface. We used single-particle cryo-electron microscopy (cryo-EM) to further characterize these ribosomes and observed that a high percentage of ribosomes were missing S2, S3, or both. These data support a model in which the ribosome dimerization activity of HPF evolved to protect labile proteins that are essential for ribosome function. HPF is almost universally conserved in bacteria, and HPF deletions in diverse species exhibit decreased viability during starvation. Our data provide mechanistic insight into this phenotype and establish a mechanism for how HPF protects ribosomes during quiescence. IMPORTANCE The formation of ribosome dimers during periods of dormancy is widespread among bacteria. Dimerization is typically mediated by a single protein, hibernation-promoting factor (HPF). Bacteria lacking HPF exhibit strong defects in viability and pathogenesis and, in some species, extreme loss of rRNA. The mechanistic basis of these phenotypes has not been determined. Here, we report that HPF from the Gram-positive bacterium Bacillus subtilis preserves ribosomes by preventing the loss of essential ribosomal proteins at the dimer interface. This protection may explain phenotypes associated with the loss of HPF, since ribosome protection would aid survival during nutrient limitation and impart a strong selective advantage when the bacterial cell rapidly reinitiates growth in the presence of sufficient nutrients.


Sign in / Sign up

Export Citation Format

Share Document