scholarly journals Restriction of AID activity and somatic hypermutation by PARP-1

2019 ◽  
Vol 47 (14) ◽  
pp. 7418-7429 ◽  
Author(s):  
Sandra Tepper ◽  
Oliver Mortusewicz ◽  
Ewelina Członka ◽  
Amanda Bello ◽  
Angelika Schmidt ◽  
...  

Abstract Affinity maturation of the humoral immune response depends on somatic hypermutation (SHM) of immunoglobulin (Ig) genes, which is initiated by targeted lesion introduction by activation-induced deaminase (AID), followed by error-prone DNA repair. Stringent regulation of this process is essential to prevent genetic instability, but no negative feedback control has been identified to date. Here we show that poly(ADP-ribose) polymerase-1 (PARP-1) is a key factor restricting AID activity during somatic hypermutation. Poly(ADP-ribose) (PAR) chains formed at DNA breaks trigger AID-PAR association, thus preventing excessive DNA damage induction at sites of AID action. Accordingly, AID activity and somatic hypermutation at the Ig variable region is decreased by PARP-1 activity. In addition, PARP-1 regulates DNA lesion processing by affecting strand biased A:T mutagenesis. Our study establishes a novel function of the ancestral genome maintenance factor PARP-1 as a critical local feedback regulator of both AID activity and DNA repair during Ig gene diversification.

2008 ◽  
Vol 205 (11) ◽  
pp. 2585-2594 ◽  
Author(s):  
Kevin M. McBride ◽  
Anna Gazumyan ◽  
Eileen M. Woo ◽  
Tanja A. Schwickert ◽  
Brian T. Chait ◽  
...  

Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates somatic mutation and class switch recombination in B lymphocytes by introducing uracil:guanine mismatches into DNA. Repair pathways process these mismatches to produce point mutations in the Ig variable region or double-stranded DNA breaks in the switch region DNA. However, AID can also produce off-target DNA damage, including mutations in oncogenes. Therefore, stringent regulation of AID is required for maintaining genomic stability during maturation of the antibody response. It has been proposed that AID phosphorylation at serine 38 (S38) regulates its activity, but this has not been tested in vivo. Using a combination of mass spectrometry and immunochemical approaches, we found that in addition to S38, AID is also phosphorylated at position threonine 140 (T140). Mutation of either S38 or T140 to alanine does not impact catalytic activity, but interferes with class switching and somatic hypermutation in vivo. This effect is particularly pronounced in haploinsufficient mice where AID levels are limited. Although S38 is equally important for both processes, T140 phosphorylation preferentially affects somatic mutation, suggesting that posttranslational modification might contribute to the choice between hypermutation and class switching.


Author(s):  
Brigette Tippin ◽  
Myron F. Goodman

The mechanism of somatic hypermutation of the immunoglobulin genes remains a mystery after nearly 30 years of intensive research in the field. While many clues to the process have been discovered in terms of the genetic elements required in the immunoglobulin genes, the key enzymatic players that mediate the introduction of mutations into the variable region are unknown. The recent wave of newly discovered eukaryotic DNA polymerases have given a fresh supply of potential candidates and a renewed vigour in the search for the elusive mutator factor governing affinity maturation. In this paper, we discuss the relevant genetic and biochemical evidence known to date regarding both somatic hypermutation and the new DNA polymerases and address how the two fields can be brought together to identify the strongest candidates for further study. In particular we discuss evidence for the in vitro biochemical misincorporation properties of human Rad30B/Pol ι and how it compares to the in vivo somatic hypermutation spectra.


Author(s):  
Mary A. Slatter ◽  
Andrew R. Gennery

DNA-repair pathways recognise and repair DNA damaged by exogenous and endogenous agents to maintain genomic integrity. Defects in these pathways lead to replication errors, loss or rearrangement of genomic material and eventually cell death or carcinogenesis. The creation of diverse lymphocyte receptors to identify potential pathogens requires breaking and randomly resorting gene segments encoding antigen receptors. Subsequent repair of the gene segments utilises ubiquitous DNA-repair proteins. Individuals with defective repair pathways are found to be immunodeficient and many are radiosensitive. The role of repair proteins in the development of adaptive immunity by VDJ recombination, antibody isotype class switching and affinity maturation by somatic hypermutation has become clearer over the past few years, partly because of identification of the genes involved in human disease. We describe the mechanisms involved in the development of adaptive immunity relating to DNA repair, and the clinical consequences and treatment of the primary immunodeficiency resulting from such defects.


2015 ◽  
Vol 370 (1676) ◽  
pp. 20140247 ◽  
Author(s):  
Shishi Luo ◽  
Alan S. Perelson

Antibody affinity maturation by somatic hypermutation of B-cell immunoglobulin variable region genes has been studied for decades in various model systems using well-defined antigens. While much is known about the molecular details of the process, our understanding of the selective forces that generate affinity maturation are less well developed, particularly in the case of a co-evolving pathogen such as HIV. Despite this gap in understanding, high-throughput antibody sequence data are increasingly being collected to investigate the evolutionary trajectories of antibody lineages in HIV-infected individuals. Here, we review what is known in controlled experimental systems about the mechanisms underlying antibody selection and compare this to the observed temporal patterns of antibody evolution in HIV infection. We describe how our current understanding of antibody selection mechanisms leaves questions about antibody dynamics in HIV infection unanswered. Without a mechanistic understanding of antibody selection in the context of a co-evolving viral population, modelling and analysis of antibody sequences in HIV-infected individuals will be limited in their interpretation and predictive ability.


2005 ◽  
Vol 7 (4) ◽  
pp. 1-20 ◽  
Author(s):  
Nicola J. Curtin

Poly(ADP-ribose) polymerase 1 (PARP-1) is a zinc-finger DNA-binding enzyme that is activated by binding to DNA breaks. Poly(ADP-ribosyl)ation of nuclear proteins by PARP-1 converts DNA damage into intracellular signals that activate either DNA repair by the base-excision pathway or cell death. A family of 18 PARPs has been identified, but only the most abundant, PARP-1 and PARP-2, which are both nuclear enzymes, are activated by DNA damage. PARP inhibitors of ever-increasing potency have been developed in the 40 years since the discovery of PARP-1, both as tools for the investigation of PARP-1 function and as potential modulators of DNA-repair-mediated resistance to cytotoxic therapy. Owing to the high level of homology between the catalytic domains of PARP-1 and PARP-2, the inhibitors probably affect both enzymes. Convincing biochemical evidence, which has been corroborated by genetic manipulation of PARP-1 activity, shows that PARP inhibition is associated with increased sensitivity to DNA-alkylating agents, topoisomerase I poisons and ionising radiation. Novel PARP inhibitors of sufficient potency and suitable pharmacokinetic properties to allow evaluation in animal models have been shown to enhance the antitumour activity of temozolomide (a DNA-methylating agent), topoisomerase poisons and ionising radiation; indeed, the combination with temozolomide resulted in complete tumour regression in two independent studies. The combination of a PARP inhibitor and temozolomide is currently undergoing clinical evaluation for the first time.


2018 ◽  
Author(s):  
Nicholas Economos ◽  
Rebecca K Delker ◽  
Pete Stavropoulos ◽  
F. Nina Papavasiliou

AbstractActivation-induced cytidine deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) in B lymphocytes by catalyzing the introduction of deoxyuracil: deoxyguanine mismatches into the DNA of the transcribed Ig locus. Repair pathways then process these mismatches to produce point mutations in the Ig variable region or double-stranded DNA breaks in the switch region followed by deletional recombination. It has been suggested that post-translational modifications on AID mediate a number of these different decisions, ranging from global targeting (Ig vs the genome), local targeting (variable vs switch region; transcribed vs non-transcribed strand) as well as process-appropriate DNA repair. Here we demonstrate that absence of RNF126, an E3 ligase shown to mono-ubiquitylate AID, results in a specific strand targeting defect in SHM, producing substantial G>C bias; strickingly, loss of RNF126 was also associated with tandem indels within the variable region (JH4 intron) but only a slight increase in the types of chromosomal translocations that are characteristic of deregulated AID. Conversely, these findings suggest that mono-ubiquitination of AID, likely in situ, is necessary for the proper removal of the protein from the non-transcribed strand, thus producing both optimal patterns of SHM and also limiting the number of indels within the target locus.


2021 ◽  
Author(s):  
Catherine Tang ◽  
Artem Krantsevich ◽  
Thomas MacCarthy

B-cells undergo somatic hypermutation (SHM) of the Immunoglobulin (Ig) variable region to generate high-affinity antibodies. SHM relies on the activity of activation-induced deaminase (AID), which mutates C>U preferentially targeting WRC (W=A/T, R=A/G) hotspots. Downstream mutations at WA Polymerase η hotspots contribute further mutations. Computational models of SHM can describe the probability of mutations essential for vaccine responses. Previous studies using short subsequences (k-mers) failed to explain divergent mutability for the same k-mer. We developed the DeepSHM (Deep learning on SHM) model using k-mers of size 5-21, improving accuracy over previous models. Interpretation of DeepSHM identified an extended DWRCT (D=A/G/T) motif with particularly high mutability. Increased mutability was further associated with lower surrounding G content. Our model also discovered a conserved AGYCTGGGGG (Y=C/T) motif within FW1 of IGHV3 family genes with unusually high T>G substitution rates. Thus, a wider sequence context increases predictive power and identifies novel features that drive mutational targeting.


2021 ◽  
Vol 11 ◽  
Author(s):  
Artem Krantsevich ◽  
Catherine Tang ◽  
Thomas MacCarthy

The somatic hypermutation (SHM) of Immunoglobulin (Ig) genes is a key process during antibody affinity maturation in B cells. The mutagenic enzyme activation induced deaminase (AID) is required for SHM and has a preference for WRC hotspots in DNA. Error-prone repair mechanisms acting downstream of AID introduce further mutations, including DNA polymerase eta (Polη), part of the non-canonical mismatch repair pathway (ncMMR), which preferentially generates mutations at WA hotspots. Previously proposed mechanistic models lead to a variety of predictions concerning interactions between hotspots, for example, how mutations in one hotspot will affect another hotspot. Using a large, high-quality, Ig repertoire sequencing dataset, we evaluated pairwise correlations between mutations site-by-site using an unbiased measure similar to mutual information which we termed “mutational association” (MA). Interactions are dominated by relatively strong correlations between nearby sites (short-range MAs), which can be almost entirely explained by interactions between overlapping hotspots for AID and/or Polη. We also found relatively weak dependencies between almost all sites throughout each gene (longer-range MAs), although these arise mostly as a statistical consequence of high pairwise mutation frequencies. The dominant short-range interactions are also highest within the most highly mutating IGHV sub-regions, such as the complementarity determining regions (CDRs), where there is a high hotspot density. Our results suggest that the hotspot preferences for AID and Polη have themselves evolved to allow for greater interactions between AID and/or Polη induced mutations.


2021 ◽  
Vol 118 (50) ◽  
pp. e2114743118
Author(s):  
Guojun Yu ◽  
Yongwei Zhang ◽  
Varun Gupta ◽  
Jinghang Zhang ◽  
Thomas MacCarthy ◽  
...  

The H3.3 histone variant and its chaperone HIRA are involved in active transcription, but their detailed roles in regulating somatic hypermutation (SHM) of immunoglobulin variable regions in human B cells are not yet fully understood. In this study, we show that the knockout (KO) of HIRA significantly decreased SHM and changed the mutation pattern of the variable region of the immunoglobulin heavy chain (IgH) in the human Ramos B cell line without changing the levels of activation-induced deaminase and other major proteins known to be involved in SHM. Except for H3K79me2/3 and Spt5, many factors related to active transcription, including H3.3, were substantively decreased in HIRA KO cells, and this was accompanied by decreased nascent transcription in the IgH locus. The abundance of ZMYND11 that specifically binds to H3.3K36me3 on the IgH locus was also reduced in the HIRA KO. Somewhat surprisingly, HIRA loss increased the chromatin accessibility of the IgH V region locus. Furthermore, stable expression of ectopic H3.3G34V and H3.3G34R mutants that inhibit both the trimethylation of H3.3K36 and the recruitment of ZMYND11 significantly reduced SHM in Ramos cells, while the H3.3K79M did not. Consistent with the HIRA KO, the H3.3G34V mutant also decreased the occupancy of various elongation factors and of ZMYND11 on the IgH variable and downstream switching regions. Our results reveal an unrecognized role of HIRA and the H3.3K36me3 modification in SHM and extend our knowledge of how transcription-associated chromatin structure and accessibility contribute to SHM in human B cells.


Sign in / Sign up

Export Citation Format

Share Document