vdj recombination
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 14)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Mark Chernyshev ◽  
Mateusz Kaduk ◽  
Martin Corcoran ◽  
Gunilla B. Karlsson Hedestam

Macaques are frequently used to evaluate candidate vaccines and to study infection-induced antibody responses, requiring an improved understanding of their naïve immunoglobulin (IG) repertoires. Baseline gene usage frequencies contextualize studies of antigen-specific immune responses, providing information about how easily one may stimulate a response with a particular VDJ recombination. Studies of human IgM repertoires have shown that IG VDJ gene frequencies vary several orders of magnitude between the most and least utilized genes in a manner that is consistent across many individuals but to date similar analyses are lacking for macaque IgM repertoires. Here, we quantified VDJ gene usage levels in unmutated IgM repertoires of 45 macaques, belonging to two species and four commonly used subgroups: Indian and Chinese origin rhesus macaques and Indonesian and Mauritian origin cynomolgus macaques. We show that VDJ gene frequencies differed greatly between the most and least used genes, with similar overall patterns observed in macaque subgroups and individuals. However, there were also clear differences affecting the use of specific V, D and J genes. Furthermore, in contrast to humans, macaques of both species utilized IGHV4 family genes to a much higher extent and showed evidence of evolutionary expansion of genes of this family. Finally, we used the results to inform the analysis of a broadly neutralizing HIV-1 antibody elicited in SHIV-infected rhesus macaques, RHA1.V2.01, which binds the apex of the Env trimer in a manner that mimics the binding mode of PGT145. We discuss the likelihood that similar antibodies could be elicited in different macaque subgroups.


Author(s):  
Mingyan Fang ◽  
Zheng Su ◽  
Hassan Abolhassani ◽  
Wei Zhang ◽  
Chongyi Jiang ◽  
...  

AbstractBoth DNA damage response and methylation play a crucial role in antigen receptor recombination by creating a diverse repertoire in developing lymphocytes, but how their defects relate to T cell repertoire and phenotypic heterogeneity of immunodeficiency remains obscure. We studied the TCR repertoire in patients with the mutation in different genes (ATM, DNMT3B, ZBTB24, RAG1, DCLRE1C, and JAK3) and uncovered distinct characteristics of repertoire diversity. We propose that early aberrancies in thymus T cell development predispose to the heterogeneous phenotypes of the immunodeficiency spectrum. Shorter CDR3 lengths in ATM-deficient patients, resulting from a decreased number of nucleotide insertions during VDJ recombination in the pre-selected TCR repertoire, as well as the increment of CDR3 tyrosine residues, lead to the enrichment of pathology-associated TCRs, which may contribute to the phenotypes of ATM deficiency. Furthermore, patients with DNMT3B and ZBTB24 mutations who exhibit discrepant phenotypes present longer CDR3 lengths and reduced number of known pathology-associated TCRs.


2021 ◽  
Author(s):  
Andrei Slabodkin ◽  
Maria Chernigovskaya ◽  
Ivana Mikocziova ◽  
Rahmad Akbar ◽  
Lonneke Scheffer ◽  
...  

The process of recombination between variable (V), diversity (D), and joining (J) immunoglobulin (Ig) gene segments determines an individual's naive Ig repertoire and, consequently, (auto)antigen recognition. VDJ recombination follows probabilistic rules that can be modeled statistically. So far, it remains unknown whether VDJ recombination rules differ between individuals. If these rules differed, identical (auto)antigen-specific Ig sequences would be generated with individual-specific probabilities, signifying that the available Ig sequence space is individual specific. We devised a sensitivity-tested distance measure that enables inter-individual comparison of VDJ recombination models. We discovered, accounting for several sources of noise as well as allelic variation in Ig sequencing data, that not only unrelated individuals but also human monozygotic twins and even inbred mice possess statistically distinguishable immunoglobulin recombination models. This suggests that, in addition to genetic, there is also nongenetic modulation of VDJ recombination. We demonstrate that population-wide individualized VDJ recombination can result in orders of magnitude of difference in the probability to generate (auto)antigen-specific Ig sequences. Our findings have implications for immune receptor–based individualized medicine approaches relevant to vaccination, infection, and autoimmunity.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4477-4477
Author(s):  
Alexander Y Komkov ◽  
Anastasia O Smirnova ◽  
Anna M Miroshnichenkova ◽  
Alexander M Popov ◽  
Alexander I Karachunskiy ◽  
...  

Abstract Background. Genomic rearrangements of T and B cell receptor genes (BCR and TCR) have become the gold standard marker for clonality assessment and minimal residual disease monitoring (MRD) in acute lymphoblastic leukemia (ALL). B-ALL can bear both TCR and BCR rearrangements, whereas T-ALL contains mainly TCR rearrangements. The limitation on the number of potential markers decreases T-ALL cases suitable for MRD monitoring and its reliability. We discovered a missed stage of TRB locus VDJ-recombination during which rearrangement between D1 and D2 segments occurs. Here we examined this new type of rearrangement in pediatric T-ALL as a potential clonal marker for MRD diagnostics for the first time. Methods. Identification of TRB D1-D2 rearrangements was performed using targeted high-throughput sequencing on the Illumina MiSeq instrument [1]. Genomic libraries for sequencing were obtained using PCR with intronic primers flanking the TRBD1 and TRBD2 genes. Genomic DNA for the libraries was extracted from T-ALL patients' bone marrow and peripheral blood of healthy volunteers. DNA from normal CD4+ and CD8+ T-cells was used as a positive control. DNA from normal B-cells and the RMS cell line was used as a negative control. Extraction of TRB D1-D2 rearrangements from sequencing data was performed using modified MiXCR software. Post-analysis was performed using VDJtools software. Results. This study analyzed a cohort of 144 children aged 2-16 years with T-ALL and 12 healthy individuals aged 25-40 years. We identified TRB D1-D2 rearrangements in all analyzed samples except negative controls (B-cells and RMS cell line). The dominant TRB D1-D2 clone in all normal samples occupied 25-30% and had zero length of the D1-D2 junction. The clonal size of the second clone in the top was 3-8%. Based on this observation, we set a 30% cut-off for zero-length D1-D2 junction rearrangements and a 10% cut-off for others to identify abnormally proliferated T-ALL specific clones. We identified 221 different leukemia-related D1-D2 rearrangements in 124 T-ALL samples in total. We intersected them with those in normal samples to test the uniqueness of leukemia-related rearrangements as potential markers. 89% of analyzed rearrangements were specific for leukemia samples, so they can be used for tracking leukemic cells. 11% of rearrangements were present in at least one normal sample and can be used for clonality analysis but are useless for MRD monitoring due to its relatively high generation probability. Zero-length D-D junction was detected as a major clonal marker (25-100%) in 42 T-ALL samples. Nevertheless, 23 out of these 42 samples contained additional unique rearrangements useful for MRD. 29 out of the other 82 samples included one major rearrangement (clonal rate 80-90%), six samples had two major rearrangements with equal clonal rates (30-50%), and the rest of the samples contained 3-5 rearrangements representing oligoclonality. The length of the D-D junction among detected rearrangements in both leukemic and normal samples has a bimodal distribution which is probably linked to two different levels of TdT or exonuclease activity during D1-D2 recombination. Additionally, we observed a strong correlation (Mann-Whitney-U-test, p-value < 0.001) between the presence of TRB D1-D2 rearrangements in T-ALL samples and the CD117 negative immunophenotype of leukemic cells. Conclusions. Obtained results show that TRB D1-D2 rearrangements are a common feature of normal and malignant T-cells. Unique leukemia-related TRB D1-D2 rearrangements can be detected in 73% of pediatric T-ALL cases. It can be routinely detected by PCR with subsequent NGS and can be easily integrated into an existing multiplex system for T-ALL clonality and MRD analysis. References.  Komkov et al. High-throughput sequencing of T-cell receptor alpha chain clonal rearrangements at the DNA level in lymphoid malignancies. British Journal of Haematology. 2020 Mar. 188(5): 723-731. Acknowledgment. This work was supported by Russian Science Foundation grant № 20-75-10091 to AK. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Gregory Russell Costa ◽  
Annie Poirier ◽  
Erin Bromage

In rainbow trout (Oncorhynchus mykiss), three classes of antibodies have been identified: IgM, IgD, and IgT, which differ in their abundance and effector functions. Though the process of VDJ recombination that creates these antibodies is often described as a stochastic process, recent findings in mammals suggest that there are biases in antibody construction. Because class switching is absent in teleosts, studying the IgM and IgT communities of rainbow trout provides the opportunity to see how evolution has differentially shaped the IgM and IgT repertoires. Even though it has not yet been demonstrated that biases exist in variable region construction for trout immunoglobulins, it seems reasonable that both natural and artificial selection have driven preferential gene-segment usage and pairing biases in rainbow trout. In this study, we sequenced the heavy chain variable regions of membrane IgM and IgT from multiple fish and predicted that given the more generalist role of the abundant IgM there would be less pressure to bias V gene segment usage and DJ pairings; rather, natural selection would have favored diversity and the ability to respond to a plethora of pathogens. Conversely, as IgT is substantially less abundant in the serum than IgM and specialized in its function, there would be selective pressure to make the most out of a little, thus favoring biased V segment usage and preferential DJ pairings. In support of our hypotheses, for IgT, over 70% of DJ pairs were biased and over 60% of antibodies were constructed with just two V gene segments. These biases were not prevalent in the IgM repertoire, where only 4% of DJ pairs were biased and no single V gene segment was utilized in more than 10% of antibodies. We found that these biases have profound influences in the richness and evenness of the repertoires, with the IgM repertoire investing more equitably in nearly double the number of VDJ combinations compared with IgT.


2021 ◽  
Author(s):  
Andrei Slabodkin ◽  
Maria Chernigovskaya ◽  
Ivana Mikocziova ◽  
Rahmad Akbar ◽  
Lonneke Scheffer ◽  
...  

The process of recombination between variable (V), diversity (D), and joining (J) immunoglobulin (Ig) gene segments determines an individual's naive Ig repertoire, and consequently (auto)antigen recognition. VDJ recombination follows probabilistic rules that can be modeled statistically. So far, it remains unknown whether VDJ recombination rules differ between individuals. If these rules differed, identical (auto)antigen-specific Ig sequences would be generated with individual-specific probabilities, signifying that the available Ig sequence space is individual-specific. We devised a sensitivity-tested distance measure that enables inter-individual comparison of VDJ recombination models. We discovered, accounting for several sources of noise as well as allelic variation in Ig sequencing data, that not only unrelated individuals but also human monozygotic twins and even inbred mice possess statistically distinguishable immunoglobulin recombination models. This suggests that, in addition to genetic, there is also non-genetic modulation of VDJ recombination. We demonstrate that population-wide individualized VDJ recombination can result in orders of magnitude of difference in the probability to generate (auto)antigen-specific Ig sequences. Our findings have implications for immune receptor-based individualized medicine approaches relevant to vaccination, infection, and autoimmunity.


2020 ◽  
Vol 16 (12) ◽  
pp. e1008394
Author(s):  
Zachary Sethna ◽  
Giulio Isacchini ◽  
Thomas Dupic ◽  
Thierry Mora ◽  
Aleksandra M. Walczak ◽  
...  

The diversity of T-cell receptor (TCR) repertoires is achieved by a combination of two intrinsically stochastic steps: random receptor generation by VDJ recombination, and selection based on the recognition of random self-peptides presented on the major histocompatibility complex. These processes lead to a large receptor variability within and between individuals. However, the characterization of the variability is hampered by the limited size of the sampled repertoires. We introduce a new software tool SONIA to facilitate inference of individual-specific computational models for the generation and selection of the TCR beta chain (TRB) from sequenced repertoires of 651 individuals, separating and quantifying the variability of the two processes of generation and selection in the population. We find not only that most of the variability is driven by the VDJ generation process, but there is a large degree of consistency between individuals with the inter-individual variance of repertoires being about ∼2% of the intra-individual variance. Known viral-specific TCRs follow the same generation and selection statistics as all TCRs.


2020 ◽  
Vol 11 ◽  
Author(s):  
Shelly Pathak ◽  
Dorota Rowczenio ◽  
Samuel Lara-Reyna ◽  
Mark Kacar ◽  
Roger Owen ◽  
...  

The Schnitzler Syndrome (SchS) is an acquired, autoinflammatory condition successfully treated with IL-1 inhibition. The two main defining features of this late-onset condition are neutrophilic urticarial dermatoses (NUD) and the presence of an IgM monoclonal component. While the former aspect has been extensively studied in this disease setting, the enigmatic paraproteinaemia and its potential consequential effects within SchS, has not previously been thoroughly addressed. Previous studies analyzing clonal B cell repertoires have largely focused on autoimmune disorders such as Systemic Lupus Erythematous (SLE) and hematological malignancies such as Chronic Lymphocytic Leukaemia (CLL), where B-cell clonality is central to disease pathology. The present study uses next-generation sequencing to provide detailed insight into aspects of B cell VDJ recombination and properties of the resulting immunoglobulin chains. An overview of IgH regional dynamics in 10 SchS patients, with a particular focus on CDR3 sequences and VDJ gene usage is reported, highlighting the presence of specific B cell expansions. Protein microarray detected a substantial proportion of autoreactive IgM to nuclear target proteins, though a single universal target was not identified. Together, these genetic and functional findings impart new understanding into this rare disorder.


2020 ◽  
Vol 36 (16) ◽  
pp. 4510-4512
Author(s):  
Giulio Isacchini ◽  
Carlos Olivares ◽  
Armita Nourmohammad ◽  
Aleksandra M Walczak ◽  
Thierry Mora

Abstract Summary Recent advances in modelling VDJ recombination and subsequent selection of T- and B-cell receptors provide useful tools to analyse and compare immune repertoires across time, individuals and tissues. A suite of tools—IGoR, OLGA and SONIA—have been publicly released to the community that allow for the inference of generative and selection models from high-throughput sequencing data. However, using these tools requires some scripting or command-line skills and familiarity with complex datasets. As a result, the application of the above models has not been available to a broad audience. In this application note, we fill this gap by presenting Simple OLGA & SONIA (SOS), a web-based interface where users with no coding skills can compute the generation and post-selection probabilities of their sequences, as well as generate batches of synthetic sequences. The application also functions on mobile phones. Availability and implementation SOS is freely available to use at sites.google.com/view/statbiophysens/sos with source code at github.com/statbiophys/sos.


Sign in / Sign up

Export Citation Format

Share Document