scholarly journals Reconstructing complex lineage trees from scRNA-seq data using MERLoT

2019 ◽  
Vol 47 (17) ◽  
pp. 8961-8974 ◽  
Author(s):  
R Gonzalo Parra ◽  
Nikolaos Papadopoulos ◽  
Laura Ahumada-Arranz ◽  
Jakob El Kholtei ◽  
Noah Mottelson ◽  
...  

Abstract Advances in single-cell transcriptomics techniques are revolutionizing studies of cellular differentiation and heterogeneity. It has become possible to track the trajectory of thousands of genes across the cellular lineage trees that represent the temporal emergence of cell types during dynamic processes. However, reconstruction of cellular lineage trees with more than a few cell fates has proved challenging. We present MERLoT (https://github.com/soedinglab/merlot), a flexible and user-friendly tool to reconstruct complex lineage trees from single-cell transcriptomics data. It can impute temporal gene expression profiles along the reconstructed tree. We show MERLoT’s capabilities on various real cases and hundreds of simulated datasets.

2018 ◽  
Author(s):  
R. Gonzalo Parra ◽  
Nikolaos Papadopoulos ◽  
Laura Ahumada-Arranz ◽  
Jakob El Kholtei ◽  
Noah Mottelson ◽  
...  

AbstractAdvances in single-cell transcriptomics techniques are revolutionizing studies of cellular differentiation and heterogeneity. Consequently, it becomes possible to track the trajectory of thousands of genes across the cellular lineage trees that represent the temporal emergence of cell types during dynamic processes. However, reconstruction of cellular lineage trees with more than a few cell fates has proved challenging. We present MERLoT (https://github.com/soedinglab/merlot), a flexible and user-friendly tool to reconstruct complex lineage trees from single-cell transcriptomics data and further impute temporal gene expression profiles along the reconstructed tree structures. We demonstrate MERLoT’s capabilities on various real cases and hundreds of simulated datasets.


2020 ◽  
Vol 7 (5) ◽  
pp. 881-896 ◽  
Author(s):  
Dongxu He ◽  
Aiqin Mao ◽  
Chang-Bo Zheng ◽  
Hao Kan ◽  
Ka Zhang ◽  
...  

Abstract The aorta, with ascending, arch, thoracic and abdominal segments, responds to the heartbeat, senses metabolites and distributes blood to all parts of the body. However, the heterogeneity across aortic segments and how metabolic pathologies change it are not known. Here, a total of 216 612 individual cells from the ascending aorta, aortic arch, and thoracic and abdominal segments of mouse aortas under normal conditions or with high blood glucose levels, high dietary salt, or high fat intake were profiled using single-cell RNA sequencing. We generated a compendium of 10 distinct cell types, mainly endothelial (EC), smooth muscle (SMC), stromal and immune cells. The distributions of the different cells and their intercommunication were influenced by the hemodynamic microenvironment across anatomical segments, and the spatial heterogeneity of ECs and SMCs may contribute to differential vascular dilation and constriction that were measured by wire myography. Importantly, the composition of aortic cells, their gene expression profiles and their regulatory intercellular networks broadly changed in response to high fat/salt/glucose conditions. Notably, the abdominal aorta showed the most dramatic changes in cellular composition, particularly involving ECs, fibroblasts and myeloid cells with cardiovascular risk factor-related regulons and gene expression networks. Our study elucidates the nature and range of aortic cell diversity, with implications for the treatment of metabolic pathologies.


2019 ◽  
Author(s):  
Arnav Moudgil ◽  
Michael N. Wilkinson ◽  
Xuhua Chen ◽  
June He ◽  
Alex J. Cammack ◽  
...  

AbstractIn situ measurements of transcription factor (TF) binding are confounded by cellular heterogeneity and represent averaged profiles in complex tissues. Single cell RNA-seq (scRNA-seq) is capable of resolving different cell types based on gene expression profiles, but no technology exists to directly link specific cell types to the binding pattern of TFs in those cell types. Here, we present self-reporting transposons (SRTs) and their use in single cell calling cards (scCC), a novel assay for simultaneously capturing gene expression profiles and mapping TF binding sites in single cells. First, we show how the genomic locations of SRTs can be recovered from mRNA. Next, we demonstrate that SRTs deposited by the piggyBac transposase can be used to map the genome-wide localization of the TFs SP1, through a direct fusion of the two proteins, and BRD4, through its native affinity for piggyBac. We then present the scCC method, which maps SRTs from scRNA-seq libraries, thus enabling concomitant identification of cell types and TF binding sites in those same cells. As a proof-of-concept, we show recovery of cell type-specific BRD4 and SP1 binding sites from cultured cells. Finally, we map Brd4 binding sites in the mouse cortex at single cell resolution, thus establishing a new technique for studying TF biology in situ.


2020 ◽  
Author(s):  
Xiangru Shen ◽  
Xuefei Wang ◽  
Shan Chen ◽  
Hongyi Liu ◽  
Ni Hong ◽  
...  

Abstract Single cell RNA sequencing (scRNA-seq) clusters cells using genome-wide gene expression profiles. The relationship between scRNA-seq Clustered-Populations (scCPops) and cell surface marker-defined classic T cell subsets is unclear. Here, we interrogated 6 bead-enriched T cell subsets with 62,235 single cell transcriptomes and re-grouped them into 9 scCPops. Bead-enriched CD4 Naïve, CD8 Naïve and CD4 memory were mainly clustered into their scCPop counterparts, while the other T cell subsets were clustered into multiple scCPops including unexpected mucosal-associated invariant T cell and natural killer T cell. Most interestingly, we discovered a new T cell type that highly expressed Interferon Signaling Associated Genes (ISAGs), namely IFNhi T. We further enriched IFNhi T for scRNA-seq analyses. IFNhi T cluster disappeared on tSNE after removing ISAGs, and IFNhi T cluster showed up by tSNE analyses of ISAGs alone, indicating ISAGs are the major contributor of IFNhi T cluster. BST2+ cells and BST2- cells showing different efficiencies of T cell activation indicates high ISAGs may contribute to quick immune responses.


2021 ◽  
Author(s):  
Ruidong Li ◽  
Zhenyu Jia

Prostate cancer (PCa) is a heterogeneous disease with highly variable clinical outcomes which presents enormous challenges in the clinical management. A vast amount of transcriptomics data from large PCa cohorts have been generated, providing extraordinary opportunities for the comprehensive molecular characterization of the PCa disease and development of prognostic signatures to accurately predict the risk of PCa recurrence. The lack of an inclusive collection and standard processing of the public transcriptomics datasets constrains the extensive use of the valuable resources. In this study, we present a user-friendly database, PCaDB, for a comprehensive and interactive analysis and visualization of gene expression profiles from 50 public transcriptomics datasets with 7,231 samples. PCaDB also includes a single-cell RNA-sequencing (scRNAseq) dataset for normal human prostates and 30 published PCa prognostic signatures. The advanced analytical methods equipped in PCaDB would greatly facilitate data mining to understand the heterogeneity of PCa and to develop prognostic signatures and machine learning models for PCa prognosis. PCaDB is publicly available at http://bioinfo.jialab-ucr.org/PCaDB/.


2018 ◽  
Author(s):  
Lingxue Zhu ◽  
Jing Lei ◽  
Bernie Devlin ◽  
Kathryn Roeder

AbstractMotivated by the dynamics of development, in which cells of recognizable types, or pure cell types, transition into other types over time, we propose a method of semi-soft clustering that can classify both pure and intermediate cell types from data on gene expression or protein abundance from individual cells. Called SOUP, for Semi-sOft clUstering with Pure cells, this novel algorithm reveals the clustering structure for both pure cells, which belong to one single cluster, as well as transitional cells with soft memberships. SOUP involves a two-step process: identify the set of pure cells and then estimate a membership matrix. To find pure cells, SOUP uses the special block structure the K cell types form in a similarity matrix, devised by pairwise comparison of the gene expression profiles of individual cells. Once pure cells are identified, they provide the key information from which the membership matrix can be computed. SOUP is applicable to general clustering problems as well, as long as the unrestrictive modeling assumptions hold. The performance of SOUP is documented via extensive simulation studies. Using SOUP to analyze two single cell data sets from brain shows it produce sensible and interpretable results.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Khadeeja Siddique ◽  
Eirill Ager-Wick ◽  
Romain Fontaine ◽  
Finn-Arne Weltzien ◽  
Christiaan V. Henkel

AbstractThe pituitary is the vertebrate endocrine gland responsible for the production and secretion of several essential peptide hormones. These, in turn, control many aspects of an animal’s physiology and development, including growth, reproduction, homeostasis, metabolism, and stress responses. In teleost fish, each hormone is presumably produced by a specific cell type. However, key details on the regulation of, and communication between these cell types remain to be resolved. We have therefore used single-cell sequencing to generate gene expression profiles for 2592 and 3804 individual cells from the pituitaries of female and male adult medaka (Oryzias latipes), respectively. Based on expression profile clustering, we define 15 and 16 distinct cell types in the female and male pituitary, respectively, of which ten are involved in the production of a single peptide hormone. Collectively, our data provide a high-quality reference for studies on pituitary biology and the regulation of hormone production, both in fish and in vertebrates in general.


2019 ◽  
Author(s):  
Carmen Lidia Diaz Soria ◽  
Jayhun Lee ◽  
Tracy Chong ◽  
Avril Coghlan ◽  
Alan Tracey ◽  
...  

AbstractOver 250 million people suffer from schistosomiasis, a tropical disease caused by parasitic flatworms known as schistosomes. Humans become infected by free-swimming, water-borne larvae, which penetrate the skin. The earliest intra-mammalian stage, called the schistosomulum, undergoes a series of developmental transitions. These changes are critical for the parasite to adapt to its new environment as it navigates through host tissues to reach its niche, where it will grow to reproductive maturity. Unravelling the mechanisms that drive intra-mammalian development requires knowledge of the spatial organisation and transcriptional dynamics of different cell types that comprise the schistomulum body. To fill these important knowledge gaps, we performed single-cell RNA sequencing on two-day old schistosomula of Schistosoma mansoni. We identified likely gene expression profiles for muscle, nervous system, tegument, parenchymal/primordial gut cells, and stem cells. In addition, we validated cell markers for all these clusters by in situ hybridisation in schistosomula and adult parasites. Taken together, this study provides a comprehensive cell-type atlas for the early intra-mammalian stage of this devastating metazoan parasite.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Sophia Clara Mädler ◽  
Alice Julien-Laferriere ◽  
Luis Wyss ◽  
Miroslav Phan ◽  
Anthony Sonrel ◽  
...  

Abstract Single-cell RNA sequencing (scRNA-seq) revolutionized our understanding of disease biology. The promise it presents to also transform translational research requires highly standardized and robust software workflows. Here, we present the toolkit Besca, which streamlines scRNA-seq analyses and their use to deconvolute bulk RNA-seq data according to current best practices. Beyond a standard workflow covering quality control, filtering, and clustering, two complementary Besca modules, utilizing hierarchical cell signatures and supervised machine learning, automate cell annotation and provide harmonized nomenclatures. Subsequently, the gene expression profiles can be employed to estimate cell type proportions in bulk transcriptomics data. Using multiple, diverse scRNA-seq datasets, some stemming from highly heterogeneous tumor tissue, we show how Besca aids acceleration, interoperability, reusability and interpretability of scRNA-seq data analyses, meeting crucial demands in translational research and beyond.


2018 ◽  
Vol 78 (1) ◽  
pp. 100-110 ◽  
Author(s):  
Quanbo Ji ◽  
Yuxuan Zheng ◽  
Guoqiang Zhang ◽  
Yuqiong Hu ◽  
Xiaoying Fan ◽  
...  

ObjectivesUnderstanding the molecular mechanisms underlying human cartilage degeneration and regeneration is helpful for improving therapeutic strategies for treating osteoarthritis (OA). Here, we report the molecular programmes and lineage progression patterns controlling human OA pathogenesis using single-cell RNA sequencing (scRNA-seq).MethodsWe performed unbiased transcriptome-wide scRNA-seq analysis, computational analysis and histological assays on 1464 chondrocytes from 10 patients with OA undergoing knee arthroplasty surgery. We investigated the relationship between transcriptional programmes of the OA landscape and clinical outcome using severity index and correspondence analysis.ResultsWe identified seven molecularly defined populations of chondrocytes in the human OA cartilage, including three novel phenotypes with distinct functions. We presented gene expression profiles at different OA stages at single-cell resolution. We found a potential transition among proliferative chondrocytes, prehypertrophic chondrocytes and hypertrophic chondrocytes (HTCs) and defined a new subdivision within HTCs. We revealed novel markers for cartilage progenitor cells (CPCs) and demonstrated a relationship between CPCs and fibrocartilage chondrocytes using computational analysis. Notably, we derived predictive targets with respect to clinical outcomes and clarified the role of different cell types for the early diagnosis and treatment of OA.ConclusionsOur results provide new insights into chondrocyte taxonomy and present potential clues for effective and functional manipulation of human OA cartilage regeneration that could lead to improved health.


Sign in / Sign up

Export Citation Format

Share Document