scholarly journals Expression of the human oestrogen receptor-alpha gene is regulated by promoter F in MG-63 osteoblastic cells

2003 ◽  
Vol 372 (3) ◽  
pp. 831-839 ◽  
Author(s):  
Elisabetta LAMBERTINI ◽  
Letizia PENOLAZZI ◽  
Silvia GIORDANO ◽  
Laura DEL SENNO ◽  
Roberta PIVA

(O)estrogen receptor-α (ERα), a hormone-dependent transcription factor belonging to the steroid/thyroid-hormone-receptor superfamily, plays an essential role in the development and maintenance of the skeleton. Here we report the analysis of an unexplored sequence inside the bone-specific distal promoter F (PF) with respect to the regulation of ERα gene expression in bone. This sequence, 785 bp in size, is localized upstream of the assigned transcription start site of exon F, at −117140 bp from the originally described transcription start site +1. It contains a TA reach box, a conventional CAAT box and potential regulatory elements for many transcription factors, including Cbfa1 [OSE2 (osteoblast-specific element) core binding factor], GATA-1 [(A/T)GATA(A/G) binding protein], Sox5 [sex-determining region Y (SRY)-type HMG bOX protein, belonging to a subfamily of DNA-binding proteins with an HMG domain], Sry, AP1 (activator protein 1) and CP2 (activator of γ-globin). It is able to strongly activate the luciferase reporter gene in MG-63 osteoblastic-like cells, but not in MCF7 breast-cancer cells. This is in agreement with different transcripts that we found in the two cell types. The footprinting and electrophoretic mobility-shift assays (EMSAs) showed that, inside the region analysed, there were some sequences that specifically reacted to nuclear proteins isolated from MG-63 cells. In particular, we identified two regions, named PFa and PFb, that do not present binding sites for known transcription factors and that are involved in a strong DNA–protein interaction in MG-63, but not in MCF7, cells. The analysis of three transcription factors (GATA-1, Sry and Sox) that might bind the identified footprinted areas suggested a possible indirect role of these proteins in the regulation of ERα gene expression in bone. These data provide evidence for different promoter usage of the ERα gene through the recruitment of tissue-specific transcription activators and co-regulators.

2000 ◽  
Vol 348 (3) ◽  
pp. 675-686 ◽  
Author(s):  
Isabelle VAN SEUNINGEN ◽  
Michaël PERRAIS ◽  
Pascal PIGNY ◽  
Nicole PORCHET ◽  
Jean-Pierre AUBERT

Control of gene expression in intestinal cells is poorly understood. Molecular mechanisms that regulate transcription of cellular genes are the foundation for understanding developmental and differentiation events. Mucin gene expression has been shown to be altered in many intestinal diseases and especially cancers of the gastrointestinal tract. Towards understanding the transcriptional regulation of a member of the 11p15.5 human mucin gene cluster, we have characterized 3.55 kb of the 5ʹ-flanking region of the human mucin gene MUC5B, including the promoter, the first two exons and the first intron. We report here the promoter activity of successively 5ʹ-truncated sections of 956 bases of this region by fusing it to the coding region of a luciferase reporter gene. The transcription start site was determined by primer-extension analysis. The region upstream of the transcription start site is characterized by the presence of a TATA box at bases -32/-26, DNA-binding elements for transcription factors c-Myc, N-Myc, Sp1 and nuclear factor ĸB as well as putative activator protein (AP)-1-, cAMP-response-element-binding protein (CREB)-, hepatocyte nuclear factor (HNF)-1-, HNF-3-, TGT3-, gut-enriched Krüppel factor (GKLF)-, thyroid transcription factor (TTF)-1- and glucocorticoid receptor element (GRE)-binding sites. Intron 1 of MUC5B was also characterized, it is 2511 nucleotides long and contains a DNA segment of 259 bp in which are clustered eight tandemly repeated GA boxes and a CACCC box that bind Sp1. AP-2α and GATA-1 nuclear factors were also shown to bind to their respective cognate elements in intron 1. In transfection studies the MUC5B promoter showed a cell-specific activity as it is very active in mucus-secreting LS174T cells, whereas it is inactive in Caco-2 enterocytes and HT-29 STD (standard) undifferentiated cells. Within the promoter, maximal transcription activity was found in a segment covering the first 223 bp upstream of the transcription start site. Finally, in co-transfection experiments a transactivating effect of Sp1 on to MUC5B promoter was seen in LS174T and Caco-2 cells.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Isaac Shamie ◽  
Sascha H Duttke ◽  
Karen J la Cour Karottki ◽  
Claudia Z Han ◽  
Anders H Hansen ◽  
...  

Abstract Chinese hamster ovary (CHO) cells are widely used for producing biopharmaceuticals, and engineering gene expression in CHO is key to improving drug quality and affordability. However, engineering gene expression or activating silent genes requires accurate annotation of the underlying regulatory elements and transcription start sites (TSSs). Unfortunately, most TSSs in the published Chinese hamster genome sequence were computationally predicted and are frequently inaccurate. Here, we use nascent transcription start site sequencing methods to revise TSS annotations for 15 308 Chinese hamster genes and 3034 non-coding RNAs based on experimental data from CHO-K1 cells and 10 hamster tissues. We further capture tens of thousands of putative transcribed enhancer regions with this method. Our revised TSSs improves upon the RefSeq annotation by revealing core sequence features of gene regulation such as the TATA box and the Initiator and, as exemplified by targeting the glycosyltransferase gene Mgat3, facilitate activating silent genes by CRISPRa. Together, we envision our revised annotation and data will provide a rich resource for the CHO community, improve genome engineering efforts and aid comparative and evolutionary studies.


1998 ◽  
Vol 332 (3) ◽  
pp. 681-687 ◽  
Author(s):  
Shaun R. DONNELLY ◽  
Stephen E. MOSS

To gain insight into the molecular basis of annexin gene expression we have analysed the annexin I and VI gene promoters. A previously described 881 bp sequence immediately upstream of the annexin I transcription start site and a similar size fragment proximal to the annexin VI transcription start site both drove expression of the luciferase reporter gene in fibroblasts and epithelial cells. Neither promoter displayed any sensitivity to dexamethasone, suggesting that the putative glucocorticoid response element in the annexin I promoter is non-functional. Consistent with this, endogenous annexin I gene expression was unaffected by dexamethasone at the mRNA and protein levels in A431 cells. A series of 5´ deletions of the two promoters were examined to define the minimal active sequences. For annexin I this corresponded to a sequence approx. 150 bp upstream of the transcription start site that included CAAT and TATA boxes. Unexpectedly, the annexin VI promoter, which also contains CAAT and TATA boxes, was fully active in the absence of these elements, a 53 bp sequence between these boxes and the transcription start site having maximal activity. Electrophoretic mobility-shift assays with nuclear extracts from A431 and HeLa cells with probes corresponding to this region revealed an SP1-binding site. These results show that the annexin I and VI genes have individual modes of transcriptional regulation and that if either annexin I or annexin VI has an anti-inflammatory role, then this is in the absence of steroid-induced gene expression.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2254-2254
Author(s):  
Julia Gambone ◽  
Stephanie Dusaban ◽  
Susan Shetzline

Abstract Neuromedin U (NmU) is a 25-amino acid neuropeptide that is expressed at high levels in the brain, gut, and bone marrow. In the brain, NmU modulates the central control of feeding and bone mass. In the intestine, NmU regulates the contraction of smooth muscle, local blood flow, and ion transport. In the bone marrow, the physiological function of NmU remains ill-defined. To determine the physiological function of NmU in hematopoietic cells, we utilized K562-MERT cells, which express a tamoxifen-inducible dominant negative Myb (MERT), and cell culture assays. We chose to test the function of NmU in a cell line that expresses high levels of the proto-oncogene c-myb because c-Myb encodes a transcription factor that regulates cell proliferation, survival, and differentiation through the transactivation of its target genes. By inhibiting endogenous Myb activity in K562-MERT cells by tamoxifen in methylcellulose cultures, we observed a 6-fold decrease in cell number compared to untreated K562-MERT cells. Supplementing the tamoxifen treated methylcellulose cultures of K562-MERT cells with NmU resulted in a 3.6-fold increase in K562-MERT cell number compared to K562-MERT cells treated with only tamoxifen. In liquid cultures using primary cells from patients with acute myeloid leukemia, we observed more cells in the cultures with NmU than when NmU was absent from the cultures. Finally, silencing NmU gene expression in K562 cells via RNA interference decreased the proliferation of these cells. Collectively, these data demonstrate that NmU functions to promote the proliferation of hematopoietic cells. The ability of NmU to rescue cell growth in tamoxifen treated K562-MERT cells and Myb’s role in regulating hematopoietic cell proliferation led us to hypothesize that Myb mediates hematopoietic cell proliferation in part by directly regulating NmU gene expression. To test this hypothesis, we examined the DNA sequence upstream of NmU’s predicted transcription start site (as noted in Genbank accession #NM_006681) for potential Myb response elements (MREs). We identified eleven potential MREs within the first 2kb upstream of NmU’s transcription start site. Of these MREs, five were identified as canonical (PyAAC(G/T)G). Our search also identified potential Ets-2 binding motifs within the human NmU promoter region, which were of interest because Myb has been reported to cooperate with Ets-2 in the regulation of c-kit and CD34 gene expression. To determine if any of the potential MREs within the NmU promoter were functional, we first completed in vitro assays using luciferase reporter constructs followed by in vivo assays using chromatin immunoprecipitation (ChIP) assays. The luciferase reporter constructs were generated such that the first 2kb upstream of NmU’s transcription start site was inserted upstream of the luciferase gene in pGL3-basic to yield pGL3-NmU. When pGL3-NmU was co-transfected into 293T cells with a c-Myb expression construct, we observed an average of 15-fold induction of luciferase activity compared to empty vector. There was no change in luciferase activity when 293T cells were co-transfected with the c-Myb isoform B-Myb compared to empty vector, suggesting that c-Myb and not B-Myb interact with the MREs within the NmU promoter to induce its expression. Mutation of either MRE9 or 10, which are distal to NmU’s transcription start site, in pGL3-NmU prevented c-Myb from inducing luciferase gene expression, demonstrating that MRE9 and 10 are functional. When Ets-2 was co-transfected with pGL3-NmU into 293T cells, a 10-fold increase in luciferase activity was observed suggesting that Ets-2 and c-Myb may cooperate to increase the transcription of NmU. To determine the physiologic relevance of our in vitro luciferase studies, we performed ChIP assays. Following immunoprecipitation of the cross-linked chromatin with either anti-c-Myb or anti-Ets-2, a PCR product of the recovered DNA was observed using primers that flanked MRE9, MRE10, and one Ets-2 site, demonstrating that in vivo c-Myb and Ets-2 interact directly with NmU’s promoter. Studies are underway to determine whether c-Myb and Ets-2 cooperate to induce NmU gene expression. Further characterization of the regulation of NmU gene expression in normal and malignant hematopoietic cells may yield new clues to Myb’s role in leukemogenesis and could suggest new therapeutic targets in human myeloid leukemia cells.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pengcheng Lyu ◽  
Robert E. Settlage ◽  
Honglin Jiang

Abstract Background Satellite cells are the myogenic precursor cells in adult skeletal muscle. The objective of this study was to identify enhancers and transcription factors that regulate gene expression during the differentiation of bovine satellite cells into myotubes. Results Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) was performed to identify genomic regions where lysine 27 of H3 histone is acetylated (H3K27ac), i.e., active enhancers, from bovine satellite cells before and during differentiation into myotubes. A total of 19,027 and 47,669 H3K27ac-marked enhancers were consistently identified from two biological replicates of before- and during-differentiation bovine satellite cells, respectively. Of these enhancers, 5882 were specific to before-differentiation, 35,723 to during-differentiation, and 13,199 common to before- and during-differentiation bovine satellite cells. Whereas most of the before- or during-differentiation-specific H3K27ac-marked enhancers were located distally to the transcription start site, the enhancers common to before- and during-differentiation were located both distally and proximally to the transcription start site. The three sets of H3K27ac-marked enhancers were associated with functionally different genes and enriched with different transcription factor binding sites. Specifically, many of the H3K27ac-marked enhancers specific to during-differentiation bovine satellite cells were associated with genes involved in muscle structure and development, and were enriched with binding sites for the MyoD, AP-1, KLF, TEAD, and MEF2 families of transcription factors. A positive role was validated for Fos and FosB, two AP-1 family transcription factors, in the differentiation of bovine satellite cells into myotubes by siRNA-mediated knockdown. Conclusions Tens of thousands of H3K27ac-marked active enhancers have been identified from bovine satellite cells before or during differentiation. These enhancers contain binding sites not only for transcription factors whose role in satellite cell differentiation is well known but also for transcription factors whose role in satellite cell differentiation is unknown. These enhancers and transcription factors are valuable resources for understanding the complex mechanism that mediates gene expression during satellite cell differentiation. Because satellite cell differentiation is a key step in skeletal muscle growth, the enhancers, the transcription factors, and their target genes identified in this study are also valuable resources for identifying and interpreting skeletal muscle trait-associated DNA variants in cattle.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2608-2608
Author(s):  
Albert Yang ◽  
Yanling Liao ◽  
Jeremy Gold ◽  
Lena Street ◽  
Laxmi V Baxi ◽  
...  

Abstract Abstract 2608 Introduction: HUCB has been described to contain hematopoietic multi-lineage progenitor cells that contribute to the success in treating malignant and non-malignant diseases (Cairo et al, Blood, 1997). We demonstrated that multi-lineage progenitor cells derived from HUCB can differentiate into cells representative of the 3 germ layers in vitro (Vandeven/Cairo et al, Exp Hem, 2007). Zaehres et al (Exp Hem, 2010) have described another population of primitive stem cells, USSCs, as a new potential source to generate iPS cells following retroviral transduction. This suggests that USSCs are a strong candidate as a source for developing patient specific or HLA matched iPSC banks. Since using retroviral iPS cells are challenged with the possibility of oncogene reactivation; gene integration free methods of generating iPS cells such as small molecule treatment to activate ES transcription factor genes are needed. Furthermore, the epigenetic modification of the USSCs at the key ES transcription factors has not been described and this information will provide insights on the differentiation potential of USSCs and their capacity to reprogramming. Objective: To determine the DNA methylation patterns in the core regulatory regions, including both enhancer and promoter of ES transcription factors Oct4 and Nanog in USSCs prior to and following gene transcription effects of DNMT1 inhibition by treatment with 5-azacytidine. Methods: USSCs were derived from HUCB mononuclear cells in 30% FBS and 10-7M dexamethasone (Kogler, J Exp Med, 2004). The USSC population was confirmed by flow cytometry and their fibroblastic morphology. The cells were passaged in the same medium without dexamethasone. Bisulfite sequencing was performed to characterize the CpG island methylation in the regulatory regions of Oct4 (from 2563 bp upstream to 250 bp downstream of Oct4 transcription start site) and Nanog (from 1449 bp to 82 bp upstream of the Nanog transcription start site). RT-PCR and qPCR were conducted to determine the expression levels of Nanog, Oct4 and Sox2, using isoform specific and intron spanning primers. 3mM 5-azacytidine was used to treat USSCs for demethylation studies and the RNA was collected 24 hours following treatment. The results were compared to human embryonic stem cells and human foreskin fibroblasts as positive and negative controls, respectively. Results: USSCs were derived from 50% (n=25) of HUCB; with 1–10 colonies from each successfully derived cord blood. Flow cytometry indicated that USSCs were lineage negative and express overlapping but distinct cell surface markers with MSCs; positive for CD73, CD90, CD146, CD50, but negative for CD106. Bisulfite sequencing of USSCs demonstrated a mosaic methylation pattern of CpG islands at the regulatory sites of both Oct4 and Nanog. An average of 65% and 47% of the CpGs were unmethylated in the enhancer and promoter regions of Nanog, respectively. 56% were unmethylated at the enhancer of Oct4 while the promoter was heavily methylated, except for the 400 bp region that spans the Oct4 transcription start site, which was 80% unmethylated. This is consistent with the RT-PCR results showing a low but consistent level of Nanog, Oct4 and Sox2 (Figure 1). Based on q-PCR using isoform-specific and intro-spanning primers, we determined that USSCs have about 20-and 400- fold higher levels of Nanog and Oct4 expression, respectively,compared to fibroblasts. Following a 24hr exposure to a DNMT1 inhibitor, 5-azacytidine, to the USSCs, there was a 10-fold increase in the mRNA expression of Oct4, Nanog, and Sox2. Conclusions: HUCB derived USSCs have a mosaic pattern of CpG island methylations in the distal and proximal regions of key ES transcription factors, Oct4 and Nanog. This is supported by a consistent low expression level of these genes. The mosaic pattern of CpG islands seems to be more malleable by small molecule perturbation; 3mM of 5-azacytidine appeared to significantly increase the Oct4 and Nanog expression. We hypothesize that due to their semi-permissive chromatin structure at the core regulatory regions in key ES transcription factors, HUCB derived USSCs are likely to be a more optimal choice of small molecule derived induced pluripotent stem cells compared to other cell types. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 78 (6) ◽  
pp. 1589-1595
Author(s):  
L Romao ◽  
L Osorio-Almeida ◽  
DR Higgs ◽  
J Lavinha ◽  
SA Liebhaber

We describe an alpha-thalassemia determinant in which alpha-globin expression is silenced by a deletion located 27 kb 5′ to the transcription start site of the alpha 2-globin gene. This alpha- thalassemic determinant, (alpha alpha)MM, is a member of a newly described group of thalassemic mutations resulting from deletion of locus-controlling sequences critical to globin gene expression.


Development ◽  
1995 ◽  
Vol 121 (7) ◽  
pp. 1957-1970 ◽  
Author(s):  
K.W. Makabe ◽  
C.V. Kirchhamer ◽  
R.J. Britten ◽  
E.H. Davidson

The SM50 gene encodes a minor matrix protein of the sea urchin embryo spicule. We carried out a detailed functional analysis of a cis-regulatory region of this gene, extending 440 bp upstream and 120 bp downstream of the transcription start site, that had been shown earlier to confer accurate skeletogenic expression of an injected expression vector. The distal portion of this fragment contains elements controlling amplitude of expression, while the region from −200 to +105 contains spatial control elements that position expression accurately in the skeletogenic lineages of the embryo. A systematic mutagenesis analysis of this region revealed four adjacent regulatory elements, viz two copies of a positively acting sequence (element D) that are positioned just upstream of the transcription start site; an indispensable spatial control element (element C) that is positioned downstream of the start site; and further downstream, a second positively acting sequence (element A). We then constructed a series of synthetic expression constructs. These contained oligonucleotides representing normal and mutated versions of elements D, C, and A, in various combinations. We also changed the promoter of the SM50 gene from a TATA-less to a canonical TATA box form, without any effect on function. Perfect spatial regulation was also produced by a final series of constructs that consisted entirely of heterologous enhancers from the CyIIIa gene, the SV40 early promoter, and synthetic D, C, and A elements. We demonstrate that element C exercises the primary spatial control function of the region we analyzed. We term this a ‘locator’ element. This differs from conventional ‘tissue-specific enhancers’ in that while it is essential for expression, it has no transcriptional activity on its own, and it requires other, separable, positive regulatory elements for activity. In the normal configuration these ancillary positive functions are mediated by elements A and D. Only positively acting control elements were observed in the SM50 regulatory domain throughout this analysis.


Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 917-930 ◽  
Author(s):  
Maike Stam ◽  
Christiane Belele ◽  
Wusirika Ramakrishna ◽  
Jane E Dorweiler ◽  
Jeffrey L Bennetzen ◽  
...  

Abstract Paramutation is an interaction between alleles that leads to a heritable change in the expression of one allele. In B′/B-I plants, B-I (high transcription) always changes to B′ (low transcription). The new B′ allele retains the low expression state in the next generation and paramutates B-I at a frequency of 100%. Comparisons of the structure and expression of B′ with that of a closely related allele that does not participate in paramutation demonstrated that transcription from the same promoter-proximal sequences is not sufficient for paramutation. Fine-structure recombination mapping localized sequences required for B′ expression and paramutation. The entire 110 kb upstream of the B′ transcription start site was cloned and sequenced and the recombination breakpoints were determined for 12 recombinant alleles. Sequences required for expression and paramutation mapped to distinct regions, 8.5-49 kb and 93-106 kb upstream of the B′ transcription start site, respectively. Sequencing and DNA blot analyses indicate that the B′ region required for paramutation is mostly unique or low copy in the maize genome. These results represent the first example of long-distance regulatory elements in plants and demonstrate that paramutation is mediated by long-distance cis and trans interactions.


Sign in / Sign up

Export Citation Format

Share Document