scholarly journals BIOL-08. IGFBP2 PROMOTES TUMOR METASTASIS IN SHH MEDULLOBLASTOMA

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i4-i4
Author(s):  
Haritha Kunhiraman ◽  
Anna Kenney

Abstract Medulloblastoma (MB) is the most common pediatric brain malignancy. MB comprises 5 major subgroups known as WNT, SHH p53wt, SHH p53mut, Group 3 and Group 4. Among the four MB subgroups SHH group is the most dominant molecular subgroup in infants and adults. These tumors are proposed to arise from cerebellar granule neuron precursors (CGNPs), whose developmental expansion requires SHH signaling from the neighboring Purkinje neurons. Previous reports suggest that SHH group features a unique tumor microenvironment compared with other MB groups. Recently, we performed cytokine array analysis of culture media from different MB cell lines. Interestingly, our data showed increased levels of IGFBP2 produced by SHH MB cell lines compared to others. We confirmed these results using ELISA and Western blotting from 3 human SHH MB cell lines, and Smo/A1 mouse tumor cells. IGFBP2 is a member of IGFBP super family of proteins; it plays important roles in tumor cell proliferation, metastasis and drug resistance. We analyzed the role of IGFBP2 in SHH group medulloblastoma tumor growth and metastasis. IGFBP2 knock-down stable cell lines showed phenotypic changes including reduced cell proliferation, cell migration and colony size. Our preliminary in vitro data suggest IGFBP2 exerts it metastasis-promoting role in SHH MB by regulating the expression of EMT marker proteins such as N cadherin, slug etc. and matrix remodeling proteins like MMPs and TIMPs. We are currently performing functional studies in organotypic tumor slice cultures to validate these findings and establish IGFBP2 as a novel regulator of aggressive tumor growth and spread in SHH MB.

2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3160-3160 ◽  
Author(s):  
Emily Rychak ◽  
Derek Mendy ◽  
Karen Miller ◽  
Jim Leisten ◽  
Rama Krishna Narla ◽  
...  

Abstract Over expression of the PI3 kinase/mTOR/AKT pathway has been well documented in MM patient biopsies and human MM cell lines, suggesting this pathway plays a key role in the survival and proliferation of malignant plasma cells. Rapamycin and the rapalogs are allosteric inhibitors of the mTORC1 complex (consisting of mTOR, raptor, mLST8 and PRAS40), inducing mainly cytostatic effects but not cell death. Inhibition of mTORC1 prevents a negative feedback loop to the mTORC2 complex (consisting of mTOR, Rictor, mLST8 and Sin 1) leading to the phosphorylation of AKT. Phosphorylated AKT is a key inducer of anti-apoptosis mechanisms and cell cycle progression, which may explain the limited results of the rapalogs in the clinic. Recently developed mTOR kinase inhibitors (i.e., CC-223) target both mTORC1 and mTORC2 complexes in order to inhibit tumor growth and importantly, induce cell death. Here we evaluate the effects of CC-223 on a panel of MM cell lines, in combination with current standard of care agents in MM (the corticosteroid, dexamethasone [DEX] and the IMiD® immunomodulatory drugs, lenalidomide [LEN] and pomalidomide [POM]), as well as in the context of LEN resistance. Single agent CC-223 was shown to inhibit cell proliferation in a panel of 10 MM cell lines achieving IC50 values between 0.1-1 µM following 5 days of treatment. CC-223 also reduced cell viability reaching IC50 values between 0.4-1 µM in 5 out of 10 MM cell lines tested. CC-223 induced concentration-dependent G1 phase arrest within 24h of treatment followed by an induction of cell death by 48h. The anti-MM tumor activity of CC-223 (0.3-10 mg/kg) was further tested in SCID mice with xenotransplants of NCI-H929 grown to approximately 100-150 mm3 in size. A dose-dependent tumor growth inhibition and tumor growth delay was seen with once daily dosing of CC-223. Combination of CC-223 with standard of care therapy compounds was also evaluated in vitro. The combination of CC-223 and DEX demonstrated synergistic effects on the inhibition of cell proliferation in 6 MM cell lines (combination index: 0.0002-0.38) tested over 5 days. CC-223 also had synergistic effects on the same panel of MM cell lines when combined with LEN (combination index: 0.05-0.8). Acquisition of drug resistance in patients receiving standard of care therapies is still one of the major clinical problems in MM. POM, the next generation of IMiD® immunomodulatory agents, has shown clinically meaningful results in patients that are resistant or have relapsed to their drug regimens, including LEN. We have recently developed in vitro cellular models of LEN-resistance using the H929 MM cell line. H929 cells with acquired resistance to LEN (H929 R10-1, R10-2, R10-3 and R10-4) were shown to have one copy number loss of cereblon compared to their matched LEN-sensitive control (H929 D1). In addition to this, protein expression analysis identified that these resistant cell lines also gained the activation of signaling pathways such as PI3K/AKT/mTOR, MEK/MAPK as well as anti-apoptotic factors. For example, S473 AKT phosphorylation was highly elevated in LEN-resistant cell lines which correlated with loss of PTEN protein expression (H929 R10-3 and R10-4). Interestingly, regardless of PI3K/AKT/mTOR pathway status, all LEN-sensitive and resistant H929 cells responded to CC-223 treatment with a strong inhibition of cell proliferation (H929 D1 IC50 0.2 µM, and H929 R10 1-4 IC50 0.2-0.35 µM) and to a lesser effect, induction of cell death, over a 5 day period. Similar to the panel of MM cell lines, G1 arrest occurred after 24h treatment and cell death (Sub-G1) was increased by 72h of treatment. CC-223 treatment reduced S473 pAKT and p-4EBP1 after 1h while total AKT and 4EBP1 remained unchanged in both the sensitive and resistant MM cell lines. Combination treatment of LEN-sensitive and resistant H929 cells with CC-223 and POM had synergistic inhibitory effects on cell proliferation (combination index: 0.35-0.7) and cell viability (combination index: 0.15-0.42). In conclusion, the mTOR kinase inhibitor, CC-223 potently inhibited MM cell proliferation by inducing G1 arrest and cell death in a panel of MM cell lines and reduction of tumor volume in vivo. The combination of LEN, POM or DEX with CC-223 had synergistic effects on MM cell proliferation and viability. Therefore, CC-223 in combination with other standard of care agents could become an important clinical tool for the treatment of MM in the future. Disclosures: Rychak: Celgene Corporation: Employment, Equity Ownership. Mendy:Celgene: Employment, Equity Ownership. Miller:Celgene Corporation: Employment, Equity Ownership. Leisten:Celgene Corporation: Employment, Equity Ownership. Narla:Celgene Corporation: Employment, Equity Ownership. Raymon:Celgene Corporation: Employment, Equity Ownership. Chopra:Celgene: Employment, Equity Ownership. Lopez-Girona:Celgene: Employment, Equity Ownership.


2015 ◽  
Vol 33 (7_suppl) ◽  
pp. 205-205
Author(s):  
Thomas Nelius ◽  
Courtney Jarvis ◽  
Dalia Martinez-Marin ◽  
Stephanie Filleur

205 Background: Docetaxel/DTX and cabazitaxel/CBZ have shown promise in the treatment of metastatic Castration-Refractory Prostate Cancer/mCPRC however, comparative studies are missing. Toxicities of these drugs are significant, urging the need to modify taxane regimens. Recently, low-dose metronomic/LDM treatments using conventional chemotherapeutic drugs have shown benefits in CPRC in improving the effect of anti-angiogenic agents. Previously, we have demonstrated that LDM-DTX in combination with PEDF curbs significantly CRPC growth, limits metastases formation and prolongs survival in vivo. In this study, we intended to compare the cytotoxic effect of CBZ and DTX on CRPC cells in vitro and CL1 tumors in vivo. Methods: PC3, DU145 cell lines were from ATCC.CL1 cells were obtained from androgen-deprived LNCaP cells. Cell proliferation was assessed by crystal violet staining and cell cycle analyses. In vitro cytotoxicity assays were performed on CL1 cells/RAW264.7 macrophages co-cultures treated with PEDF and increasing doses of taxanes. For the in vivo studies, CL1 cells were engineered to stably express the DsRed Express protein +/- PEDF. PEDF anti-tumor effects were assessed on s.c. xenografts treated with DTX (5mg/kg ip ev. 4 day) as reference, CBZ (5mg/kg ip ev. 4 days, 1mg/kg for 10 days, 0.5mg/kg q.a.d. and 0.1mg/kg daily) or placebo. Results: CBZ limits cell proliferation with a greater efficacy than DTX in all CRPC cell lines tested. DU145 presented the largest difference. High doses of taxane blocked tumor cells in mitosis, whereas LDM increased the SubG1 population. This effect was significantly higher in DU145 cells treated with CBZ. In vivo, 5mg/kg CBZ delayed tumor growth more efficiently than 5mg/kg DTX. PEDF/5mg/kg CBZ markedly delayed tumor growth compared to all treatments. Finally, engulfment of tumor cells by macrophages was higher in combined treatments suggesting an inflammation-related process. Conclusions: CBZ is more efficient than DTX both in vitro and in vivo.The data also reinforce PEDF as a promising anti-neoplasic agent in combination with LDM taxane chemotherapies.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also done to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, invasion in vitro, and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. For the mechanism part, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC. Methods Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays. Results Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4. Conclusions PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2021 ◽  
Author(s):  
Ji-Ping Hou ◽  
Xue-Bo Men ◽  
Lian-Ying Yang ◽  
En-Kun Han ◽  
Chun-Qi Han ◽  
...  

Abstract Objective This study was aimed at investigating the involvement of CircCCT3 in PC and study its interactions and functioning during the PC progression in vitro and in vivo by the use of molecular biology and bioinformatic methods.Methods The expressions of CircCCT3 and miR-613 in pancreatic carcinoma tissues and cell lines were evaluated by quantitative realtime PCR .The relationship between clinical pathologic features as well as survival rate and CircCCT3 expression was analyzed with Chi-square test and Kaplan–Meier method. CCK-8, wound healing , transwell assays and FITC-AnnexinV/PI assay were used to assess cell proliferation, migration, invasion and apoptosis after CircCCT3 overexpression or downregulation. Dual-Luciferase reporterassay, RNA immunoprecipitation (RIP) ,RNA pull down and fluorescence in situ hybridization(FISH) assays were performed to validate the potential interaction of CircCCT3, miR-613 and VEGFA.Nude mouse xenograft tumor assay was used to detect CircCCT3 effects on pancreatic tumorigenesis in vivo.Western blotting analysis was performed to examine the VEGFA and VEGFR2 protein expressions following.Results CircCCT3 expression was significantly increased in PC tissues and cell lines. CircCCT3 expression was negatively correlated with miR-613 expression. Moreover, it was found that CircCCT3 promote cell proliferation, migration, invasion and inhibited cell apoptosis in PC cells. CircCCT3 acted as a sponge for miR-613 to facilitate VEGFA and VEGFR2 expression. si-CirCCT3also inhibited tumor growth of PC in nude mice.si-CircCCT3 reduced VEGFA and VEGFR2 expression, whereas overexpression of CircCCT3 increased VEGFA and VEGFR2 expression.Conclusions Increased CircCCT3 suggests a poor prognosis in PC patients and promotes the migration and invasion through targeting VEGFA/VEGFR2 signaling. CircCCT3 may serve as a potential and promising therapeutic target for PC treatment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 625-625 ◽  
Author(s):  
Aldo M Roccaro ◽  
Antonio Sacco ◽  
Abdel Kareem Azab ◽  
Yu-Tzu Tai ◽  
Patricia Maiso ◽  
...  

Abstract Abstract 625 Background. Bone marrow (BM)-derived mesenchymal stem cells (MSCs) support multiple myeloma (MM) cell growth, but little is know about the putative mechanisms that may regulate the interaction between clonal MM plasma cells and the surrounding BM milieu. It is known that cell-to-cell communication is partially mediated by exosomes. We therefore characterized the role BM-MSCs-derived exosomes as key regulators of MM pathogenesis in vivo and in vitro. Methods. MSCs were collected from BM of either healthy subjects or relapsed/refractory MM patients. MM cell lines (MM.1S; RPMI.8226) and normal BM stromal cell line (HS-5) were used. Purity of BM-MSCs was evaluated by flow cytometry (CD34−,14−, 45−, 19−, 138−; CD73+, 90+, 105+, 106+). Exosomes were collected from conditioned medium of either normal and MM BM-MSCs, or HS-5 cells; and studied using electron microscopy, immunogold labeling, and western blot for the detection of CD63 and CD81. Transfer of PKH67-fluorescently labeled exosomes to MM cells was evaluated by confocal microscopy and fluorescence plate reader. Transfer of murine-derived miRNA-containing exosomes into human MM cell lines was evaluated by qRT-PCR (exosomes were collected from BM-MSCs of C57BL/6 miRNA-15a/16-1−/− or C57BL/6 mice). miRNA expression profiling was obtained from normal (n=4) and MM (n=9) BM-MSCs-derived exosomes (TaqMan human miRNA profiling). Normal and MM BM-MSCs-derived exosomes were loaded into tissue-engineered bones (TEB) with MM.1S-GFP+/Luc+ cells: MM cell homing and MM tumor growth has been tested in vivo by using in vivo confocal microscopy and bioluminescence (BLI) imaging, respectively. Normal and MM BM-MSCs, as well as HS-5 cells, were transfected with either anti- or pre-miRNA-15a or scramble probe; and evaluated for their ability to modulate MM cell proliferation and adhesion in vitro. Results. Primary normal and MM BM-MSCs release CD63+/CD81+ exosomes, as confirmed by electron microscopy, immunogold labeling, and western blot. BM-MSCs exosomes are transferred into MM cells, as shown by confocal microscopy. This transfer was further confirmed in human MM cell lines incubated with murine (C57BL/6 miRNA-15a/16-1−/− and wild type) BM-MSCs-derived exosomes: qRT-PCR showed presence of murine miRNAs in human MM cell lines. The impact of normal and MM BM-MSCs-derived exosomes on MM cell behavior in vivo was next evaluated. MM cells co-cultured with exosomes derived from MM BM-MSCs induced rapid tumor growth at the site of the TEB scaffold, as well as rapid dissemination in the BM niches. In contrast, MM cells co-cultured with exosomes derived from normal BM-MSCs led to minimal tumor growth and minimal dissemination at distant BM niches. These results indicate that MM BM-MSCs-derived exosomes contribute to tumor growth and dissemination of MM. To further explore the mechanisms by which exosomes induce tumor growth, we performed miRNA expression profiling on exosomes isolated from both normal and MM BM-MSCs: supervised hierarchical clustering analysis showed increased expression of 24 miRNAs and reduced expression of 3 miRNAs in MM BM-MSCs-derived exosomes versus normal (1.5 fold change; P<0.05). Notably, we found that miRNA15a is significantly lower in exosomes derived from BM-MSCs of MM patients. We previously showed that miRNA15a shows lower expression in primary MM cells. We therefore sought to examine whether genetic transfer of miRNAs or lack of transfer of tumor suppressor miRNAs (such as miRNA15a) can lead to the significant change in tumor growth and dissemination in MM that we observed in vivo. We therefore transfected HS-5 stromal cells and primary normal BM-MSCs with pre-miRNA15a, and found that by over-expressing miRNA-15a in BM-MSCs inhibited MM cell proliferation and adhesion to fibronectin. Next MM cells were cultured in presence of BM-MSCs isolated from either C57BL/6 mice or C57BL/6 miRNA15a/16−/: miRNA15a-deficient BM-MSCs significantly induced MM cell proliferation (P<0.05). Moreover, exosomes isolated from HS-5 pre-miRNA15a-transfected cells both inhibited MM cell proliferation and reduced their adhesion properties. Conclusions. These findings demonstrate the existence of exosome-driven interactions between the BM milieu and MM cells, and suggest that exosomes might constitute a novel mechanism for intercellular transfer of genetic information in the form of miRNAs in clonal plasma cell disorders, such as MM. Disclosures: Roccaro: Roche: Advisory Board. Anderson:Celgene: Consultancy, Honoraria; Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria; Novartis: Consultancy, Honoraria. Ghobrial:Novartis: Advisory Board; Celgene: Advisory Board; Millennium: Advisory Board; Noxxon: Advisory board; Millennium: Research Funding; Bristol-Myers Squibb: Research Funding.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC. Methods Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays. Results Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4. Conclusions PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Chun-Wei Peng ◽  
Ling-Xiao Yue ◽  
Yuan-Qin Zhou ◽  
Sai Tang ◽  
Chen Kan ◽  
...  

Abstract Background miR-100 has been reported to closely associate with gastric cancer (GC) initiation and progression. However, the underlying mechanism of miR-100-3p in GC is still largely unclear. In this study, we intend to study how miR-100-3p regulates GC malignancy. Methods The expression levels of miR-100-3p in vitro (GES-1 and GC cell lines) and in vivo (cancerous and normal gastric tissues) were examined by quantitative real-time PCR (qRT-PCR). MTT and PE/Annexin V analyses were responsible for measurement of the effects of miR-100-3p on GC cell proliferation and apoptosis. Transwell assay with or without matrigel was used to examine the capacity of migration and invasion in GC cells. The interaction of miR-100-3p with bone morphogenetic protein receptor 2 (BMPR2) was confirmed through transcriptomics analysis and luciferase reporter assay. qRT-PCR and Western blot analyses were applied to determine the expression of ERK/AKT and Bax/Bcl2/Caspase3, which were responsible for the dysfunction of miR-100-3p. Results miR-100-3p was down-regulated in GC cell lines and cancerous tissues, and was negatively correlated with BMPR2. Loss of miR-100-3p promoted tumor growth and BMPR2 expression. Consistently, the effects of miR-100-3p inhibition on GC cells were partially neutralized by knockdown of BMPR2. Over-expression of miR-100-3p simultaneously inhibited tumor growth and down-regulated BMPR2 expression. Consistently, over-expression of BMPR2 partially neutralized the effects of miR-100-3p over-expression. Further study demonstrated that BMPR2 mediated the effects downstream of miR-100-3p, which might indirectly regulate ERK/AKT and Bax/Bcl2/Caspase3 signaling pathways. Conclusion miR-100-3p acted as a tumor-suppressor miRNA that down-regulated BMPR2, which consequently inhibited the ERK/AKT signaling and activated Bax/Bcl2/Caspase3 signaling. This finding provided novel insights into GC and could contribute to identify a new diagnostic and therapeutic target.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yubao Gong ◽  
Chen Yang ◽  
Zhengren Wei ◽  
Jianguo Liu

Abstract To explore the expression and the functions of SRPK1 in osteosarcoma, we retrieved transcription profiling dataset by array of human bone specimens from patients with osteosarcoma from ArrayExpress (accession E-MEXP-3628) and from Gene Expression Omnibus (accession GSE16102) and analyzed expression level of SRPK1 and prognostic value in human osteosarcoma. Then we examined the effect of differential SRPK1 expression levels on the progression of osteosarcoma, including cell proliferation, cell cycle, apoptosis, and investigated its underlying molecular mechanism using in vitro osteosarcoma cell lines and in vivo nude mouse xenograft models. High expression level of SRPK1 was found in human osteosarcoma tissues and cell lines as compared to the normal bone tissues and osteoblast cells, and predicted poor prognosis of human osteosarcoma. Overexpression of SRPK1 in osteosarcoma U2OS cells led to cell proliferation but inhibition of apoptosis. In contrast, knockdown of SRPK1 in HOS cells impeded cell viability and induction of apoptosis. Moreover, silencing SRPK1 inhibited osteosarcoma tumor growth in nude mice. Mechanistic studies revealed that SRPK1 promoted cell cycle transition in osteosarcoma cells and activation of NF-κB is required for SRPK1 expression and its pro-survival signaling. SRPK1 promoted human osteosarcoma cell proliferation and tumor growth by regulating NF-κB signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document