NIMG-14. RESTING STATE EXECUTIVE CONTROL AND SALIENCE NETWORK CONNECTIVITY IN CLINICALLY STABLE LOWER GRADE GLIOMA COVARIES WITH COGNITIVE PERFORMANCE

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi130-vi131
Author(s):  
Tracy Luks ◽  
Javier Villanueva-Meyer ◽  
Christina Weyer-Jamora ◽  
Melissa Brie ◽  
Ellen Smith ◽  
...  

Abstract BACKGROUND Survival outcomes for patients with lower grade gliomas (LrGG) are improving. However, injury from tumor growth and consequences of treatment often leads to impaired cognition, particularly in cognitive domains reliant on distributed functional networks and intact white-matter tracts. Resting state functional MRI (rsfMRI) is a method of investigating the integrity of these functional networks. METHODS This study investigated rsfMRI connectivity in 21 patients with clinically stable LrGG compared to age- and gender-matched healthy controls, and associated imaging measures with cognitive outcomes. Data were acquired for 12 cognitive tests administered within one week of imaging. RsfMRI and T1-weighted images for 21 research controls were acquired from OpenNeuro datasets. RsfMRI data were processed and analyzed using the CONN toolbox using CONN’s standard regions of interest (ROI) for the 8 canonical networks as seeds, and cognitive test scores as covariates, with a threshold for T tests of p< .001 uncorrected. RESULTS Median age was 48 years old (range 27-67). There were 6 astrocytomas, IDHmut; 3 astrocytomas IDH-wt, 8 oligodendrogliomas, and 4 NOS. Thirteen had left hemisphere tumors (8 frontal, 3 parietal, 2 temporal), and 6 right (5 frontal, 1 temporal). Fourteen had previously recieved radiotherapy. There was significantly lower connectivity in frontoparietal executive control and the salience networks in LrGG patients versus controls. Within patients, lower executive control network connectivity covaried with worse performance on executive measures (FAS, Tower of London, Trails-A, Animal Naming, FrSBe), and attention and working memory measures (Digit Symbol, HVLT). Lower salience network connectivity covaried with poorer performance on executive measures (FrSBe, FAS) and attention and working memory measures (Digit Span, HVLT, WAIS-WM). CONCLUSION In clinically stable LrGG, rsfMRI measures of network connectivity are potentially useful markers to monitor and track, given the concordance with cognition, and could help guide cognitive assessment and rehabilitation.

2021 ◽  
Vol 36 (6) ◽  
pp. 1024-1024
Author(s):  
Hanna K Hausman ◽  
Cheshire Hardcastle ◽  
Alejandro Albizu ◽  
Jessica N Kraft ◽  
Nicole D Evangelista ◽  
...  

Abstract Objective Executive functioning is a cognitive domain that typically declines with normal aging. Age-related disrupted connectivity in cingulo-opercular (CON) and frontoparietal control (FPCN) resting-state networks is associated with worse performance across various executive functioning tasks. This study examines the relationships between CON and FPCN connectivity and executive functioning performance in older adults across three subdomains: working memory, inhibition, and set-shifting. Methods 274 healthy older adults (age M = 71.7, SD = 5.1; 87% Caucasian) from a clinical trial at the University of Florida and University of Arizona completed tasks of working memory (Digit Span Backwards [DSB]; Letter Number Sequencing [LNS]), inhibition (Stroop), and set-shifting (Trail Making Test Part B [TMT-B]). Participants underwent resting-state functional magnetic resonance imaging. CONN Toolbox (18b) was used for extracting average within-network connectivity of CON and FPCN. Multiple linear regressions were conducted with average network connectivity predicting performance, controlling for age, sex, education, and scanner. Results Greater average CON connectivity was associated with better performance on DSB (β = 0.26, p < 0.001), LNS (β = 0.23, p < 0.001), Stroop (β = 0.24, p < 0.001), and TMT-B (β = −0.26, p < 0.001). Greater average FPCN connectivity was associated with better performance on DSB (β = 0.22, p < 0.001) and LNS (β = 0.18, p = 0.002). Conclusions CON connectivity was significantly associated with working memory, inhibition, and set-shifting. FPCN connectivity was significantly associated with working memory. Future research should conduct regional connectivity analyses within these networks to identify intervention targets to improve executive functioning in older adults.


2020 ◽  
Vol 132 (6) ◽  
pp. 1683-1691 ◽  
Author(s):  
Kazuya Motomura ◽  
Lushun Chalise ◽  
Fumiharu Ohka ◽  
Kosuke Aoki ◽  
Kuniaki Tanahashi ◽  
...  

OBJECTIVELower-grade gliomas (LGGs) are often observed within eloquent regions, which indicates that tumor resection in these areas carries a potential risk for neurological disturbances, such as motor deficit, language disorder, and/or neurocognitive impairments. Some patients with frontal tumors exhibit severe impairments of neurocognitive function, including working memory and spatial awareness, after tumor removal. The aim of this study was to investigate neurocognitive and functional outcomes of frontal LGGs in both the dominant and nondominant hemispheres after awake brain mapping.METHODSData from 50 consecutive patients with diffuse frontal LGGs in the dominant and nondominant hemispheres who underwent awake brain surgery between December 2012 and September 2018 were retrospectively analyzed. The goal was to map neurocognitive functions such as working memory by using working memory tasks, including digit span testing and N-back tasks.RESULTSDue to awake language mapping, the frontal aslant tract was frequently identified as a functional boundary in patients with left superior frontal gyrus tumors (76.5%). Furthermore, functional boundaries were identified while evaluating verbal and spatial working memory function by stimulating the dorsolateral prefrontal cortex using the digit span and visual N-back tasks in patients with right superior frontal gyrus tumors (7.1%). Comparing the preoperative and postoperative neuropsychological assessments from the Wechsler Adult Intelligence Scale–Third Edition (WAIS-III) and Wechsler Memory Scale–Revised (WMS-R), significant improvement following awake surgery was observed in mean Perceptual Organization (Z = −2.09, p = 0.04) in WAIS-III scores. Postoperative mean WMS-R scores for Visual Memory (Z = −2.12, p = 0.03) and Delayed Recall (Z = −1.98, p = 0.04) were significantly improved compared with preoperative values for every test after awake surgery. No significant deterioration was noted with regard to neurocognitive functions in a comprehensive neuropsychological test battery. In the postoperative course, early transient speech and motor disturbances were observed in 30.0% and 28.0% of patients, respectively. In contrast, late permanent speech and motor disturbances were observed in 0% and 4.0%, respectively.CONCLUSIONSIt is noteworthy that no significant postoperative deterioration was identified compared with preoperative status in a comprehensive neuropsychological assessment. The results demonstrated that awake functional mapping enabled favorable neurocognitive and functional outcomes after surgery in patients with diffuse frontal LGGs.


2021 ◽  
pp. 1-14
Author(s):  
Jie Huang ◽  
Paul Beach ◽  
Andrea Bozoki ◽  
David C. Zhu

Background: Postmortem studies of brains with Alzheimer’s disease (AD) not only find amyloid-beta (Aβ) and neurofibrillary tangles (NFT) in the visual cortex, but also reveal temporally sequential changes in AD pathology from higher-order association areas to lower-order areas and then primary visual area (V1) with disease progression. Objective: This study investigated the effect of AD severity on visual functional network. Methods: Eight severe AD (SAD) patients, 11 mild/moderate AD (MAD), and 26 healthy senior (HS) controls undertook a resting-state fMRI (rs-fMRI) and a task fMRI of viewing face photos. A resting-state visual functional connectivity (FC) network and a face-evoked visual-processing network were identified for each group. Results: For the HS, the identified group-mean face-evoked visual-processing network in the ventral pathway started from V1 and ended within the fusiform gyrus. In contrast, the resting-state visual FC network was mainly confined within the visual cortex. AD disrupted these two functional networks in a similar severity dependent manner: the more severe the cognitive impairment, the greater reduction in network connectivity. For the face-evoked visual-processing network, MAD disrupted and reduced activation mainly in the higher-order visual association areas, with SAD further disrupting and reducing activation in the lower-order areas. Conclusion: These findings provide a functional corollary to the canonical view of the temporally sequential advancement of AD pathology through visual cortical areas. The association of the disruption of functional networks, especially the face-evoked visual-processing network, with AD severity suggests a potential predictor or biomarker of AD progression.


2016 ◽  
Vol 22 (7) ◽  
pp. 777-784 ◽  
Author(s):  
Emily B. Leaffer ◽  
Robert J. Fee ◽  
Veronica J. Hinton

AbstractObjectives: In a large cohort of boys with dystrophinopathies and their unaffected siblings, we examined whether consistently observed performance on digit span is due primarily to a verbal span or executive deficit. We additionally assessed whether digit span performance contributed to the observed variability in reading performance noted in this population. Methods: Performance of 170 boys with dystrophinopathy was compared to 95 unaffected sibling controls on measures of verbal function, reading, and digit span. Maximum digit span forward (DSF) and backward (DSB) lengths were converted to Z-scores using normative data. Independent sample t tests, analysis of variance, and hierarchical multiple regression were run (α=0.05). Results: Probands performed worse than controls on digit span, even after accounting for differences in general verbal function (p<.0001). Differences were significant for both DSF (p<.005) and DSB (p<.0001) span length, and an interaction effect yielded significantly worse DSB compared with DSF (p=.01). Reading performance was also lower in probands (p<.0001). The contribution of general level of verbal function, and forward and backward span lengths, did not vary between groups. Conclusions: In boys with dystrophinopathy, decreased performance on digit span appears to be due to both decreased span forward (measuring verbal span only) and backward (measuring verbal span and working memory). The extent to which sibling controls exhibited better performance compared to the probands was significantly greater for backward span when compared with forward span. Thus, immediate verbal memory and executive control are differentially compromised among boys with dystrophinopathy, and both of these abilities independently contribute to reading performance. (JINS, 2016, 22, 777–784)


2017 ◽  
Vol 29 (5) ◽  
pp. 827-836 ◽  
Author(s):  
Chenjie Xia ◽  
Alexandra Touroutoglou ◽  
Karen S. Quigley ◽  
Lisa Feldman Barrett ◽  
Bradford C. Dickerson

Individual differences in arousal experience have been linked to differences in resting-state salience network connectivity strength. In this study, we investigated how adding task-related skin conductance responses (SCR), a measure of sympathetic autonomic nervous system activity, can predict additional variance in arousal experience. Thirty-nine young adults rated their subjective experience of arousal to emotionally evocative images while SCRs were measured. They also underwent a separate resting-state fMRI scan. Greater SCR reactivity (an increased number of task-related SCRs) to emotional images and stronger intrinsic salience network connectivity independently predicted more intense experiences of arousal. Salience network connectivity further moderated the effect of SCR reactivity: In individuals with weak salience network connectivity, SCR reactivity more significantly predicted arousal experience, whereas in those with strong salience network connectivity, SCR reactivity played little role in predicting arousal experience. This interaction illustrates the degeneracy in neural mechanisms driving individual differences in arousal experience and highlights the intricate interplay between connectivity in central visceromotor neural circuitry and peripherally expressed autonomic responses in shaping arousal experience.


2021 ◽  
Vol 13 ◽  
Author(s):  
Martina Vettore ◽  
Matteo De Marco ◽  
Claudia Pallucca ◽  
Matteo Bendini ◽  
Maurizio Gallucci ◽  
...  

“Mild cognitive impairment” (MCI) is a diagnosis characterised by deficits in episodic memory (aMCI) or in other non-memory domains (naMCI). Although the definition of subtypes is helpful in clinical classification, it provides little insight on the variability of neurofunctional mechanisms (i.e., resting-state brain networks) at the basis of symptoms. In particular, it is unknown whether the presence of a high load of white-matter hyperintensities (WMHs) has a comparable effect on these functional networks in aMCI and naMCI patients. This question was addressed in a cohort of 123 MCI patients who had completed an MRI protocol inclusive of T1-weighted, fluid-attenuated inversion recovery (FLAIR) and resting-state fMRI sequences. T1-weighted and FLAIR images were processed with the Lesion Segmentation Toolbox to quantify whole-brain WMH volumes. The CONN toolbox was used to preprocess all fMRI images and to run an independent component analysis for the identification of four large-scale haemodynamic networks of cognitive relevance (i.e., default-mode, salience, left frontoparietal, and right frontoparietal networks) and one control network (i.e., visual network). Patients were classified based on MCI subtype (i.e., aMCI vs. naMCI) and WMH burden (i.e., low vs. high). Maps of large-scale networks were then modelled as a function of the MCI subtype-by-WMH burden interaction. Beyond the main effects of MCI subtype and WMH burden, a significant interaction was found in the salience and left frontoparietal networks. Having a low WMH burden was significantly more associated with stronger salience-network connectivity in aMCI (than in naMCI) in the right insula, and with stronger left frontoparietal-network connectivity in the right frontoinsular cortex. Vice versa, having a low WMH burden was significantly more associated with left-frontoparietal network connectivity in naMCI (than in aMCI) in the left mediotemporal lobe. The association between WMH burden and strength of connectivity of resting-state functional networks differs between aMCI and naMCI patients. Although exploratory in nature, these findings indicate that clinical profiles reflect mechanistic interactions that may play a central role in the definition of diagnostic and prognostic statuses.


2019 ◽  
Author(s):  
Alexander Belden ◽  
Tima Zeng ◽  
Emily Przysinda ◽  
Sheeba Arnold Anteraper ◽  
Susan Whitfield-Gabrieli ◽  
...  

AbstractJazz improvisation offers a model for creative cognition, as it involves the real-time creation of a novel, information-rich product. Previous research has shown that when musicians improvise, they recruit regions in the Default Mode Network (DMN) and Executive Control Network (ECN). Here, we ask whether these findings from task-fMRI studies might extend to intrinsic differences in resting state functional connectivity. We compared Improvising musicians, Classical musicians, and Minimally Musically Trained (MMT) controls in seed-based functional connectivity and network analyses in resting state functional MRI. We also examined the functional correlates of behavioral performance in musical improvisation and divergent thinking. Seed-based analysis consistently showed higher connectivity in ventral DMN (vDMN) and bilateral ECN in both groups of musically trained individuals as compared to MMT controls, with additional group differences in primary visual network, precuneus network, and posterior salience network. In particular, primary visual network connectivity to DMN and ECN was highest in Improvisational musicians, whereas within-network connectivity of vDMN and precuneus network was higher in both Improvisational and Classical musicians than in MMT controls; in contrast, connectivity between posterior salience network and superior parietal lobule was highest in Classical musicians. Furthermore, graph-theoretical analysis indicated heightened betweenness centrality, clustering, and local efficiency in Classical musicians. Taken together, results suggest that heightened functional connectivity among musicians can be explained by higher within-network connectivity (more tight-knit cortical networks) in Classical musicians, as opposed to more disperse, globally-connected cortical networks in Improvisational musicians.HighlightsMusic training is associated with higher resting state connectivityHigher connectivity in Improvisational musicians from visual network to ECN and DMNClassical musicians show higher vDMN and Precuneus within-network connectivityImprovisation and divergent thinking performance correlate with similar connectivity patterns


2019 ◽  
Vol 1248 ◽  
pp. 012005 ◽  
Author(s):  
E A Othman ◽  
A N Yusoff ◽  
M Mohamad ◽  
H Abdul Manan ◽  
A I Abd Hamid ◽  
...  

2021 ◽  
Vol 25 (4) ◽  
pp. 178-188
Author(s):  
Kavassery Venkateswaran Nisha ◽  
Devi Neelamegarajan ◽  
Nishant N. Nayagam ◽  
Jim Saroj Winston ◽  
Sam Publius Anil

Background and Objectives: The influence of musical aptitude on cognitive test performance in musicians is a long-debated research question. Evidence points to the low performance of nonmusicians in visual and auditory cognitive tasks (working memory and attention) compared with musicians. This cannot be generalized to all nonmusicians, as a sub-group in this population can have innate musical abilities even without any formal musical training. The present study aimed to study the effect of musical aptitude on the working memory and selective attention.Subjects and Methods: Three groups of 20 individuals each (a total of 60 participants), including trained-musicians, nonmusicians with good musical aptitude, and nonmusicians with low musical aptitude, participated in the present study. Cognitive-based visual (Flanker’s selective attention test) and auditory (working memory tests: backward digit span and operation span) tests were administered.Results: MANOVA (followed by ANOVA) revealed a benefit of musicianship and musical aptitude on backward digit span and Flanker’s reaction time (p<0.05). Discriminant function analyses showed that the groups could be effectively (accuracy, 80%) segregated based on the backward digit span and Flanker’s selective attention test. Trained musicians and nonmusicians with good musical aptitude were distinguished as one cluster and nonmusicians with low musical aptitude formed another cluster, hinting the role of musical aptitude in working memory and selective attention.Conclusions: Nonmusicians with good musical aptitude can have enhanced working memory and selective attention skills like musicians. Hence, caution is required when these individuals are included as controls in cognitive-based visual and auditory experiments.


Sign in / Sign up

Export Citation Format

Share Document