scholarly journals Deep Learning Versus Logistic Regression to Predict Opioid Dose Reduction After Spinal Cord Stimulation

Neurosurgery ◽  
2020 ◽  
Vol 67 (Supplement_1) ◽  
Author(s):  
Syed M Adil ◽  
Lefko T Charalambous ◽  
Kelly R Murphy ◽  
Shervin Rahimpour ◽  
Stephen C Harward ◽  
...  

Abstract INTRODUCTION Opioid misuse persists as a public health crisis affecting approximately one in four Americans.1 Spinal cord stimulation (SCS) is a neuromodulation strategy to treat chronic pain, with one goal being decreased opioid consumption. Accurate prognostication about SCS success is key in optimizing surgical decision making for both physicians and patients. Deep learning, using neural network models such as the multilayer perceptron (MLP), enables accurate prediction of non-linear patterns and has widespread applications in healthcare. METHODS The IBM MarketScan® (IBM) database was queried for all patients ≥ 18 years old undergoing SCS from January 2010 to December 2015. Patients were categorized into opioid dose groups as follows: No Use, ≤ 20 morphine milligram equivalents (MME), 20–50 MME, 50–90 MME, and >90 MME. We defined “opiate weaning” as moving into a lower opioid dose group (or remaining in the No Use group) during the 12 months following permanent SCS implantation. After pre-processing, there were 62 predictors spanning demographics, comorbidities, and pain medication history. We compared an MLP with four hidden layers to the LR model with L1 regularization. Model performance was assessed using area under the receiver operating characteristic curve (AUC) with 5-fold nested cross-validation. RESULTS Ultimately, 6,124 patients were included, of which 77% had used opioids for >90 days within the 1-year pre-SCS and 72% had used >5 types of medications during the 90 days prior to SCS. The mean age was 56 ± 13 years old. Collectively, 2,037 (33%) patients experienced opiate weaning. The AUC was 0.74 for the MLP and 0.73 for the LR model. CONCLUSION To our knowledge, we present the first use of deep learning to predict opioid weaning after SCS. Model performance was slightly better than regularized LR. Future efforts should focus on optimization of neural network architecture and hyperparameters to further improve model performance. Models should also be calibrated and externally validated on an independent dataset. Ultimately, such tools may assist both physicians and patients in predicting opioid dose reduction after SCS.

Neurosurgery ◽  
2020 ◽  
Vol 88 (1) ◽  
pp. 193-201
Author(s):  
Syed M Adil ◽  
Lefko T Charalambous ◽  
Charis A Spears ◽  
Musa Kiyani ◽  
Sarah E Hodges ◽  
...  

Abstract BACKGROUND Opioid misuse in the USA is an epidemic. Utilization of neuromodulation for refractory chronic pain may reduce opioid-related morbidity and mortality, and associated economic costs. OBJECTIVE To assess the impact of spinal cord stimulation (SCS) on opioid dose reduction. METHODS The IBM MarketScan® database was retrospectively queried for all US patients with a chronic pain diagnosis undergoing SCS between 2010 and 2015. Opioid usage before and after the procedure was quantified as morphine milligram equivalents (MME). RESULTS A total of 8497 adult patients undergoing SCS were included. Within 1 yr of the procedure, 60.4% had some reduction in their opioid use, 34.2% moved to a clinically important lower dosage group, and 17.0% weaned off opioids entirely. The proportion of patients who completely weaned off opioids increased with decreasing preprocedure dose, ranging from 5.1% in the >90 MME group to 34.2% in the ≤20 MME group. The following variables were associated with reduced odds of weaning off opioids post procedure: long-term opioid use (odds ratio [OR]: 0.26; 95% CI: 0.21-0.30; P < .001), use of other pain medications (OR: 0.75; 95% CI: 0.65-0.87; P < .001), and obesity (OR: 0.75; 95% CI: 0.60-0.94; P = .01). CONCLUSION Patients undergoing SCS were able to reduce opioid usage. Given the potential to reduce the risks of long-term opioid therapy, this study lays the groundwork for efforts that may ultimately push stakeholders to reduce payment and policy barriers to SCS as part of an evidence-based, patient-centered approach to nonopioid solutions for chronic pain.


2020 ◽  
Author(s):  
Matthew G. Crowson ◽  
Jong Wook Lee ◽  
Amr Hamour ◽  
Rafid Mahmood ◽  
Aaron Babier ◽  
...  

AbstractObjectivesHearing loss is the leading human sensory system loss, and one of the leading causes for years lived with disability with significant effects on quality of life, social isolation, and overall health. Coupled with a forecast of increased hearing loss burden worldwide, national and international health organizations have urgently recommended that access to hearing evaluation be expanded to meet demand.MethodsThe objective of this study was to develop ‘AutoAudio’ – a novel deep learning proof-of-concept model that accurately and quickly interprets diagnostic audiograms. Adult audiogram reports representing normal, conductive, mixed and sensorineural morphologies were used to train different neural network architectures. Image augmentation techniques were used to increase the training image set size. Classification accuracy on a separate test set was used to assess model performance.ResultsThe architecture with the highest out-of-training set accuracy was ResNet-101 at 97.5%. Neural network training time varied between 2 to 7 hours depending on the depth of the neural network architecture. Each neural network architecture produced misclassifications that arose from failures of the model to correctly label the audiogram with the appropriate hearing loss type. The most commonly misclassified hearing loss type were mixed losses.ConclusionRe-engineering the process of hearing testing with a machine learning innovation may help enhance access to the growing worldwide population that is expected to require audiologist services. Our results suggest that deep learning may be a transformative technology that enables automatic and accurate audiogram interpretation.


Neurosurgery ◽  
2021 ◽  
Vol 89 (Supplement_2) ◽  
pp. S73-S73
Author(s):  
Syed M Adil ◽  
Lefko T Charalambous ◽  
Charis A Spears ◽  
Musa Kiyani ◽  
Sarah E Hodges ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


2020 ◽  
Vol 6 (3) ◽  
pp. 501-504
Author(s):  
Dennis Schmidt ◽  
Andreas Rausch ◽  
Thomas Schanze

AbstractThe Institute of Virology at the Philipps-Universität Marburg is currently researching possible drugs to combat the Marburg virus. This involves classifying cell structures based on fluoroscopic microscopic image sequences. Conventionally, membranes of cells must be marked for better analysis, which is time consuming. In this work, an approach is presented to identify cell structures in images that are marked for subviral particles. It could be shown that there is a correlation between the distribution of subviral particles in an infected cell and the position of the cell’s structures. The segmentation is performed with a "Mask-R-CNN" algorithm, presented in this work. The model (a region-based convolutional neural network) is applied to enable a robust and fast recognition of cell structures. Furthermore, the network architecture is described. The proposed method is tested on data evaluated by experts. The results show a high potential and demonstrate that the method is suitable.


2021 ◽  
Vol 11 (15) ◽  
pp. 7148
Author(s):  
Bedada Endale ◽  
Abera Tullu ◽  
Hayoung Shi ◽  
Beom-Soo Kang

Unmanned aerial vehicles (UAVs) are being widely utilized for various missions: in both civilian and military sectors. Many of these missions demand UAVs to acquire artificial intelligence about the environments they are navigating in. This perception can be realized by training a computing machine to classify objects in the environment. One of the well known machine training approaches is supervised deep learning, which enables a machine to classify objects. However, supervised deep learning comes with huge sacrifice in terms of time and computational resources. Collecting big input data, pre-training processes, such as labeling training data, and the need for a high performance computer for training are some of the challenges that supervised deep learning poses. To address these setbacks, this study proposes mission specific input data augmentation techniques and the design of light-weight deep neural network architecture that is capable of real-time object classification. Semi-direct visual odometry (SVO) data of augmented images are used to train the network for object classification. Ten classes of 10,000 different images in each class were used as input data where 80% were for training the network and the remaining 20% were used for network validation. For the optimization of the designed deep neural network, a sequential gradient descent algorithm was implemented. This algorithm has the advantage of handling redundancy in the data more efficiently than other algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Author(s):  
Ranganath Singari ◽  
Karun Singla ◽  
Gangesh Chawla

Deep learning has offered new avenues in the field of industrial management. Traditional methods of quality inspection such as Acceptance Sampling relies on a probabilistic measure derived from inspecting a sample of finished products. Evaluating a fixed number of products to derive the quality level for the complete batch is not a robust approach. Visual inspection solutions based on deep learning can be employed in the large manufacturing units to improve the quality inspection units for steel surface defect detection. This leads to optimization of the human capital due to reduction in manual intervention and turnaround time in the overall supply chain of the industry. Consequently, the sample size in the Acceptance sampling can be increased with minimal effort vis-à-vis an increase in the overall accuracy of the inspection. The learning curve of this work is supported by Convolutional Neural Network which has been used to extract feature representations from grayscale images to classify theinputs into six types of surface defects. The neural network architecture is compiled in Keras framework using Tensorflow backend with state of the art Adam RMS Prop with Nesterov Momentum (NADAM) optimizer. The proposed classification algorithm holds the potential to identify the dominant flaws in the manufacturing system responsible for leaking costs.


Sign in / Sign up

Export Citation Format

Share Document