scholarly journals The Luciferase-Expressing Glioma-261 Murine Models Elicit an Immune-Mediated Antitumor Response

Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Victoria E Sanchez ◽  
John Lynes ◽  
Stuart Walbridge ◽  
Xiang Wang ◽  
Nancy A Edwards ◽  
...  

Abstract INTRODUCTION Preclinical models that accurately recapitulate the immunosuppressive properties of human gliomas are essential to assess immune therapeutics. Glioma-261 (GL261) murine glioma cells are widely used as an in Vivo model of glioma. Our group has previously shown that the red-shifted luciferase-expressing cell line, GL261 Red-FLuc, creates an inflammatory response when implanted intracranially in C57BL/6 mice. However, it remains unclear if this is particular to GL261 Red-Fluc or any GL261 cell line transfected with luciferase-expressing genes. For this reason, we have additionally explored the inflammatory response of stably transfected, monoclonal GL261-luc2 cells. METHODS To evaluate the characteristics of these various cell lines, C57BL/6 mice (n = 10 in each group) underwent stereotaxic, intracranial implantation with GL261, GL261 Red-FLuc, or GL261-Luc2 cells at doses of 5 × 104 cells/5 μL or 3 × 105 cells/5 μL. Immunohistochemistry and flow cytometry of sacrificed mouse brains assess the frequency of immune cell populations. Magnetic resonance imaging (MRI) scans were also performed to monitor relative tumor growth. Finally, in Vitro cytokine profiles were evaluated by proteome microarray. RESULTS Kaplan-Meier survival analysis demonstrated that the median survival for mice implanted with GL261 cells at 5 × 104 cells/5 μL was 21 d. However, even at a higher tumor dose (3 × 105 cells/5 μL), the GL261-Red FLuc implanted mice did not reach median survival. Mice injected with the newly transfected GL261-Luc2 cells at 3 × 105 cells/5 μL reached median survival at 23 d, but median survival was not reached for GL261-Luc2 implanted mice at 5 × 104 cells/5 μL. MRI analysis reveals clear differences in tumor growth that correspond well with the onset of clinical symptoms and median survival. In addition, proteomic analysis reveals significantly elevated inflammatory cytokines such as IFNgamma, IL-7, and TNF-alpha in the supernatant of the GL261 Red-FLuc cells and upregulated IL-1alpha in GL261-Luc2 cells. Further immune characterization is ongoing. CONCLUSION Our data suggest that both GL261 Red-FLuc and GL261-luc2 murine models create an undesirable microenvironment for tumor growth by increasing proinflammatory modulators.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi269-vi270
Author(s):  
Victoria Sanchez ◽  
John Lynes ◽  
Stuart Walbridge ◽  
Xiang Wang ◽  
Nancy Edwards ◽  
...  

Abstract Preclinical models that reliably recapitulate the immunosuppressive properties of human gliomas are essential to assess immune-based therapies. Intracranially injected GL261 cells are widely used as an immunocompetent animal model of glioma, but it is common practice to transfect these with luciferase to facilitate tumor monitoring during treatment. Our group has previously shown that the luciferase-expressing GL261 Red-FLuc cells create an inflammatory response when implanted intracranially. Now, we additionally explore the inflammatory response of GL261-Luc2 cells and demonstrate a similar host immune response occurs with this model as well. In our in vivo evaluation, C57BL/6 mice underwent stereotaxic, intracranial implantation with GL261, GL261 Red-FLuc or GL261-Luc2 cells at doses of 5x104cells/5mL or 3x105cells/5uL.MRIs were performed to monitor relative tumor growth. To assess intrinsic differences between cell lines, in vitro cytokine profiles were evaluated by proteome microarray. Kaplan-Meier survival analyses demonstrated median survival for mice implanted with GL261 cells at 5x104cells was 18 to 21 days. The GL261-Red FLuc implanted mice cells did not reach median survival at either tumor dose with greater than 60% of mice termed long-term survivors. Finally, mice injected with GL261-Luc2 cells at 3x105cells reached median survival at 23 days, but median survival was significantly prolonged for mice implanted with GL261-Luc2 at a dose of 5x104cells (37 days, with 40% becoming long-term survivors) compared to GL261 implanted mice. MRIs reveal differences in tumor growth that correspond with the differences in median survival between groups. In addition, proteomic analyses revealed significantly elevated inflammatory cytokines such as IFN-gamma, IL-7 and TNF-alpha in the supernatants of the GL261 Red-FLuc cells and GL261-Luc2 cells. Further immune characterization is ongoing. Our data suggests that GL261 Red-FLuc and GL261-Luc2 murine models elicit an anti-tumor immune response by increasing pro-inflammatory modulators which stimulate the tumoricidal function of immune cells in the tumor microenvironment.



Author(s):  
Patrycja Guzik ◽  
Klaudia Siwowska ◽  
Hsin-Yu Fang ◽  
Susan Cohrs ◽  
Peter Bernhardt ◽  
...  

Abstract Purpose It was previously demonstrated that radiation effects can enhance the therapy outcome of immune checkpoint inhibitors. In this study, a syngeneic breast tumor mouse model was used to investigate the effect of [177Lu]Lu-DOTA-folate as an immune stimulus to enhance anti-CTLA-4 immunotherapy. Methods In vitro and in vivo studies were performed to characterize NF9006 breast tumor cells with regard to folate receptor (FR) expression and the possibility of tumor targeting using [177Lu]Lu-DOTA-folate. A preclinical therapy study was performed over 70 days with NF9006 tumor-bearing mice that received vehicle only (group A); [177Lu]Lu-DOTA-folate (5 MBq; 3.5 Gy absorbed tumor dose; group B); anti-CTLA-4 antibody (3 × 200 μg; group C), or both agents (group D). The mice were monitored regarding tumor growth over time and signs indicating adverse events of the treatment. Results [177Lu]Lu-DOTA-folate bound specifically to NF9006 tumor cells and tissue in vitro and accumulated in NF9006 tumors in vivo. The treatment with [177Lu]Lu-DOTA-folate or an anti-CTLA-4 antibody had only a minor effect on NF9006 tumor growth and did not substantially increase the median survival time of mice (23 day and 19 days, respectively) as compared with untreated controls (12 days). [177Lu]Lu-DOTA-folate sensitized, however, the tumors to anti-CTLA-4 immunotherapy, which became obvious by reduced tumor growth and, hence, a significantly improved median survival time of mice (> 70 days). No obvious signs of adverse effects were observed in treated mice as compared with untreated controls. Conclusion Application of [177Lu]Lu-DOTA-folate had a positive effect on the therapy outcome of anti-CTLA-4 immunotherapy. The results of this study may open new perspectives for future clinical translation of folate radioconjugates.



2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A30.1-A30
Author(s):  
F Gsottberger ◽  
C Brandl ◽  
S Petkovic ◽  
L Nitschke ◽  
A Mackensen ◽  
...  

BackgroundThe tumor microenvironment (TME) is composed of various cell types which closely interact via cell cell contacts and cytokines leading to tumor promotion, immune cell inhibition and drug resistance. TME is increasingly recognized for its role in cancer immunotherapies. In B-cell malignancies, myeloid cells play a central role in supporting tumor growth and immune suppression (Roussel et al., 2017, Cancer Immunol Immunother). Despite the importance of a syngeneic TME, preclinical studies with novel drugs have mainly been performed in models lacking a functional immune system. Therefore, we developed an immune competent murine lymphoma model transgenic to human CD22 to study effects of targeted therapies on TME.Materials and MethodsA chimeric CD22 consisting of human extracellular and murine intracellular CD22 (h/mCD22) was introduced in BL6 mice (BL6h/mCD22). Crossbreeding with BL6λ-myc lead to spontaneous development of murine lymphoma that were serially transplanted. Tumor infiltration and TME was characterized by flow cytometry. Mice were treated with Moxetumomab pasudotox, a CD22 targeted immunotoxin and Doxorubicin.ResultsSpontaneously developed tumors in lymphoid organs from BL6h/mCD22 x λ-myc consist of a monomorphic population of h/mCD22+ murine B cells. Three primary lymphoma subclones were isolated from distinct mice and serially transplanted in syngeneic mice. Stable tumor growth was established after subcutaneous (sc) and intravenous (iv) injection. However, TME of sc tumors was infiltrated by less than 1% immune cells, while myc-driven lymphoma in humans usually show substantial immune infiltration. In contrast to sc tumors, systemically growing lymphoma in murine bone marrow (BM) are infiltrated by 30% myeloid cells and 1% T-cells and in murine spleen by 10% and 30%, respectively. Myeloid cells found in these tumors were shown to suppress T cell proliferation in vitro. To test functionality of the h/mCD22 transgene, lymphoma-bearing mice were treated with Moxetumomab, which reduced BM lymphoma infiltration by 20 to 100-fold and infiltration in spleen by 5 to 20-fold in the three lymphoma models. Effects of treatment on TME were analyzed after treatment with Doxorubicin which is known to activate myeloid cells in vivo. Compared to untreated controls, Doxorubicin increased CD11b+ cells in spleen by 1.5-fold. Among these cells, Ly6G+ granulocytic cells increased most substantially.ConclusionsWe established primary, myc-driven h/mCD22+ B-cell lymphoma which stably engraft in syngeneic mice with a TME mimicking myc-driven lymphoma in men. The model responds well to CD22-targeted therapy and Doxorubicin induces expected immunologic changes. Therefore, our unique model provides a platform to test CD22-targeting treatment strategies in an immune competent background.Disclosure InformationF. Gsottberger: None. C. Brandl: None. S. Petkovic: None. L. Nitschke: None. A. Mackensen: None. F. Müller: None.





Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 191-191
Author(s):  
Richard W. Scott ◽  
Michael J. Costanzo ◽  
Katie B. Freeman ◽  
Robert W. Kavash ◽  
Trevor M. Young ◽  
...  

Abstract Abstract 191 A series of salicylamides, fully synthetic cationic foldamers designed to disrupt the binding of the pentasaccharide unit of heparin to antithrombin III, were found to be potent neutralizers of the activity of unfractionated heparin (UFH) and low molecular weight heparins (LMWHs). A compound from this series, PMX-60056, is currently in human clinical trials for neutralization of UFH and LMWHs. PMX-60056 potently neutralizes UFH and LMWHs but is not as efficacious versus fondaparinux (FPX). The goal of the present research was to 1) identify back-up compounds to optimize activity against the LMWHs and FPX and 2) mitigate the hemodynamic effects commonly associated with protamine and observed clinically with PMX-60056 in the absence of heparin. Compounds were first tested for their ability to neutralize the anticoagulant activity of enoxaparin (ENX), tinzaparin or FPX in an in vitro amidolytic assay for factor Xa activity. While only minor improvements were observed in the neutralization of ENX and tinzaparin, compounds were identified which had 6 to 40 fold increase in activity against FPX (EC50s of 0.09 – 0.58 uM) in comparison to PMX-60056 (EC50 3.64 uM). Activated partial thromboplastin time (aPTT) assays demonstrated that these compounds maintained activity against heparin in a plasma based clotting assay. Rotation thromboelastometry (ROTEM) was used to show that these compounds are able to neutralize heparin and ENX in human whole blood, restoring normal coagulation profiles. As an initial test for safety, compounds were tested in hemolysis and cytotoxicity assays using isolated human erythrocytes, a transformed human liver cell line (HepG2 cells) and a mouse fibroblast cell line (NIH3T3). Lead back-up compounds were not cytotoxic (or hemolytic) at >100 fold concentrations over their EC50 concentrations in the anti-coagulation assays, indicating a high selectivity index between toxicity and efficacy. Five compounds were selected for further studies based on their in vitro profiles. The in vivo efficacy of these compounds was evaluated in a rat coagulation model for neutralization of ENX (2 mg/kg). Three minutes following IV dosing with ENX, either saline, protamine or one of the five salicylamide test compounds was administered. Blood was collected before dosing with ENX, and at 1, 3, 10, and 60 min after dosing, for aPTT and factor Xa analysis. Three of the five salicylamides (PMX640, PMX686 and PMX747) were more efficacious than protamine; with PMX640 and PMX686 neutralizing 91 – 100% and PMX747 neutralizing 78–100% of the ENX anti-factor Xa activity over the entire 60 minute time course. In a second in vivo model, PMX747 and PMX686 (2 mg/kg) completely neutralized the prolonged bleeding times in a rat tail bleeding model caused by treatment with 2 mg/kg ENX. Significantly, with protamine at a 5 mg/kg dosage, only partial restoration was obtained. Protamine routinely causes a transient decrease in blood pressure upon dosing, and hemodynamic effects have also been observed with PMX-60056 in human subjects in the absence of heparin. To address this issue, structural features that have successfully reduced hemodynamic liabilities in other cationic compounds were incorporated into the design of the back-up salicylamides. The effect of compounds on blood pressure and heart rate was measured via arterial catheters in rats following IV administration of protamine, PMX-60056, or test agents. As expected, in rats treated with a low dose of UFH (50 u/kg) and high dosages of antagonist, both protamine and PMX-60056 displayed transient or prolonged blood pressure reductions at 8 and 16 mg/kg, respectively. However, the lead back-up salicylamides, PMX640, PMX686 and PMX747 had little to no effect on blood pressure at these same dosages. In conclusion, we have discovered compounds in the salicylamide series that have greater efficacy versus LMWHs and that have significantly reduced hemodynamic liabilities in rats as compared to protamine. Furthermore, these compounds potently neutralize FPX activity in vitro; exceeding the activity of protamine and our clinical lead salicylamide, PMX-60056, by up to 40 fold. Thus we have been able to optimize the salicylamide series, identifying compounds that offer the potential to greatly improve upon the current clinical heparin antagonist, protamine, in respect to both activity against LMWHs and side effect profile. Disclosures: Scott: PolyMedix Inc.: Employment, Equity Ownership. Costanzo:PolyMedix Inc.: Employment, Equity Ownership. Freeman:PolyMedix Inc.: Employment, Equity Ownership. Kavash:PolyMedix Inc.: Employment, Equity Ownership. Young:PolyMedix, Inc.: Employment, Equity Ownership. DeGrado:PolyMedix, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Jeske:PolyMedix, Inc.: Research Funding.



Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 855-855
Author(s):  
Leonid Dubrovsky ◽  
Elliott Brea ◽  
Dmitry Pankov ◽  
Nicholas Veomett ◽  
Tao Dao ◽  
...  

Abstract Acute and chronic leukemias, including CD34+ CML stem cells, overexpress the Wilms tumor gene 1 (WT1) protein, making WT1 an attractive therapeutic target. ESKM is a fully human IgG1 antibody that targets a 9 amino acid sequence (RMF) of the protein WT1 in the context of HLA-A0201, allowing it to target an undruggable, widely expressed, intracellular oncogene product. BV173 is an HLA-A0201+, human Ph+ ALL cell line that expresses WT1, and tagged by our lab with luciferase. We engineered a tyrosine kinase inhibitor (TKI) resistant BV173-R cell line by transducing BV173 with the resistant T315I Bcr-Abl plasmid. Antibody-dependent cellular cytotoxicity (ADCC) was evaluated in vitro by chromium release assay, utilizing human PBMC effectors. Tumor growth in vivo was assessed in NOD/SCID gamma (NSG) mice with bioluminescence imaging (BLI). RT-PCR was used to evaluate minimal residual disease in mice with negative BLI signal at the end of therapy. Imatinib, dasatinib, and ponatinib were used at up to maximally tolerated doses, given IP once daily. ESKM was administered at 100 µg twice weekly IP. ESKM mediated ADCC against both BV173 and BV173-R cell lines in vitro. In a BV173 engrafted human leukemia xenograft model, ESKM was more potent than imatinib, with median tumor growth reduction of 78% vs 52%. Combination of imatinib and ESKM therapy resulted in a 94% reduction in leukemic growth. High dose dasatinib (40 mg/kg daily) was more potent than ESKM, but discontinuation of therapy due to dasatinib toxicity resulted in relapse. Combination with ESKM therapy with dasatinib resulted in cure in 75% of mice, confirmed by bone marrow RT-PCR three weeks after termination of therapy. For mice cytoreduced with dasatinib followed by consolidation therapy with ESKM, delayed relapse was observed, but no cures. ESKM was highly superior to imatinib and dasatinib against the T315I BV173-R leukemia in vivo. Cures were not achieved with combination therapy of ESKM and either first or second generation TKIs against resistant T315I leukemia. Ponatinib at 10 mg/kg had higher efficacy than ESKM alone against BV173-R, but mice treated with combination of ESKM and ponatinib had superior tumor reduction. CONCLUSION: ESKM is an effective therapeutic antibody for sensitive and T315I Ph+ ALL. Resistant T315I Ph+ leukemic growth is inhibited more effectively by ESKM therapy compared to imatinib and dasatinib, and combination therapy with ESKM is superior to ponatinib. Supported by the Leukemia and Lymphoma Society, NIH R01CA55349, P01 23766 and T32CA62948-18. Disclosures: Yan: Eureka Therapeutics: Employment. Liu:Eureka Therapeutics: Employment, Equity Ownership.



Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 881-881 ◽  
Author(s):  
Michaela R Reagan ◽  
Archana Swami ◽  
Pamela A Basto ◽  
Yuji Mishima ◽  
Jinhe Liu ◽  
...  

Abstract Introduction The bone marrow (BM) niche is known to exert a protective effect on lymphoid tumors, such as multiple myeloma (MM), where mesenchymal stem cell interactions with clonal plasma cells increase tumor proliferation and survival. However, certain cells within the BM milieu, such as mature osteoblasts and osteocytes, have demonstrated the potential to inhibit tumor growth; utilizing these cells presents a promising new anti-cancer approach. Hence, designing better methods of bone-specific delivery for both direct cancer cell treatment and indirect treatment through the modulation of bone cells may result in a potent, two-pronged anti-cancer strategy. Our work aimed to develop a novel system to target both MM and bone cells to induce greater osteogenesis and hamper tumor growth. Methods PEG–PLGA nanoparticles (NPs) coupled to alendronate (“bone-targeted”) or alone (“non-targeted”) were formulated and loaded with bortezomib (“BTZ-NPs”) or left empty (“BTZ-free”). NPs were characterized for their physiochemical properties, including size (using dynamic light scattering; surface charges (Zeta potential); and bone affinity (using hydroxyapatite binding). NPs were engineered with different formulation methods and those with the optimal physiochemical characteristics and drug encapsulation efficiency were used for further studies. BTZ release kinetics were analyzed using HPLC. Anti-MM effects were assessed in vitro using MTT, bioluminescence (BLI) and Annexin V/PI apoptosis flow cytometry analysis on MM1S cells. In vivo, efficacy was measured by mouse weight, BLI and survival after i.v. cancer cell injections in mice. Cellular uptake was assessed in vitro by flow cytometry and in vivo biodistribution was assessed using fluorescent whole body and fixed section imaging. Bone specificity was assessed in vitro by co-culture of bone-targeted and non-targeted NPs with bone chips or hydroxyapatite using fluorescence and TEM imaging. In an in vivo model of myeloma treatment, female Nod/SCID beige mice were injected i.v. with 4 × 106 Luc+/GFP+ MM1S cells and, at day 21, treated with a) BTZ, b) BTZ-bone-targeted NPs, c) BTZ-non-targeted NPs or d) BTZ-free bone-targeted NPs. Using an in vivo model of pre-treatment for cancer prevention, mice were pre-treated with i.p. injections of BTZ-bone-targeted NPs and appropriate controls thrice weekly for 3 weeks. They were then injected i.v. with Luc+/GFP+ 5TGM1 or MM1S cells and monitored for BLI and survival. Static and dynamic bone histomorphometry and μCT were used to assess effects of pre-treatment on bone formation and osteolysis prevention. Results Our biodegradable, NPs had uniform size distribution within the range of 100 to 200 nm based on the type of formulation, with a zeta potential of ±5mV. Bone- targeted NPs showed high affinity towards bone mineral in vitro and better skeletal accumulation in vivo compared to non-targeted NPs. NPs were easily up-taken by cells in vitro, and BTZ release kinetics showed a burst followed by a sustained-release pattern over 60 hrs. BTZ-NPs induced apoptosis in MM cells in vitro. Importantly, BTZ-bone-targeted-NP pre-treated mice showed significantly less tumor burden (BLI) and longer survival than free drug or drug-free bone-targeted NPs, thus demonstrating a tumor-inhibiting effect unique to the BTZ-bone-targeted-NPs. Pre-treatment with BTZ increased bone formation in tibias and femurs, as measured by μCT of bone volume/total volume, and trabecular thickness and number, suggesting that increased bone volume may inhibit MM. In a second mouse model, both BTZ-bone-targeted NPs and BTZ-free NPs were equally able to reduce tumor growth in vivo when given after tumor formation. Conclusion Bone-targeted nanoparticles hold great potential for clinical applications in delivering chemotherapies to bone marrow niches, reducing off-target effects, increasing local drug concentrations, and lengthening the therapeutic window. BTZ-bone-targeted NPs are able to slow tumor growth and increase survival in mice when used as a pre-treatment. This may result, at least in part, from BTZ-induced increased bone formation. These findings indicate that BTZ-bone-targeted NPs exert a chemopreventive effect in MM in vivo, thus suggesting their potential use in the clinical setting. Disclosures: Basto: BIND Therapeutics: Patent licensed by BIND, Patent licensed by BIND Patents & Royalties. Farokhzad:BIND Therapeutics: Employment, Equity Ownership; Selecta Biosciences: Employment, Equity Ownership. Ghobrial:Onyx: Membership on an entity’s Board of Directors or advisory committees; BMS: Membership on an entity’s Board of Directors or advisory committees; BMS: Research Funding; Sanofi: Research Funding; Novartis: Membership on an entity’s Board of Directors or advisory committees.



Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 39-39
Author(s):  
Kamil Bojarczuk ◽  
Kirsty Wienand ◽  
Jeremy A. Ryan ◽  
Linfeng Chen ◽  
Mariana Villalobos-Ortiz ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease that is transcriptionally classified into germinal center B-cell (GCB) and activated B-cell (ABC) subtypes. A subset of both GCB- and ABC-DLBCLs are dependent on B-cell receptor (BCR) signaling. Previously, we defined distinct BCR/PI3K-mediated survival pathways and subtype-specific apoptotic mechanisms in BCR-dependent DLBCLs (Cancer Cell 2013 23:826). In BCR-dependent DLBCLs with low baseline NF-κB activity (GCB tumors), targeted inhibition or genetic depletion of BCR/PI3K pathway components induced expression of the pro-apoptotic HRK protein. In BCR-dependent DLBCLs with high NF-κB activity (ABC tumors), BCR/PI3K inhibition decreased expression of the anti-apoptotic NF-κB target gene, BFL1. Our recent analyses revealed genetic bases for perturbed BCR/PI3K signaling and defined poor prognosis DLBCL subsets with discrete BCR/PI3K/TLR pathway alterations (Nat Med 2018 24:679). Cluster 3 DLBCLs (largely GCB tumors) exhibited frequent PTEN deletions/mutations and GNA13 mutations. Cluster 5 DLBCLs (largely ABC tumors) had frequent MYD88L265P and CD79B mutations that often occurred together. These DLBCL subtypes also had different genetic mechanisms for deregulated BCL2 expression - BCL2 translocations in Cluster 3 and focal (18q21.33) or arm level (18q) BCL2 copy number gains in Cluster 5. These observations prompted us to explore the activity of PI3K inhibitors and BCL2 blockade in genetically defined DLBCLs. We utilized a panel of 10 well characterized DLBCL cell line models, a subset of which exhibited hallmark genetic features of Cluster 3 and Cluster 5. We first evaluated the cytotoxic activity of isoform-specific, dual PI3Kα/δ and pan-PI3K inhibitors. In in vitro assays, the PI3Kα/δ inhibitor, copanlisib, exhibited the highest cytotoxicity in all BCR-dependent DLBCLs. We next assessed the transcriptional abundance of BCL2 family genes in the DLBCLs following copanlisib treatment. In BCR-dependent GCB-DLBCLs, there was highly significant induction of the pro-apoptotic HRK. In BCR-dependent ABC-DLBCLs, we observed significant down-regulation of the anti-apoptotic BFL1 protein and another NF-κB target gene, BCLxL (the anti-apoptotic partner of HRK). We then used BH3 profiling, to identify dependencies on certain BCL2 family members and to correlate these data with sensitivity to copanlisib. BCLxL dependency significantly correlated with sensitivity to copanlisib. Importantly, the BCLxL dependency was highest in DLBCL cell lines that exhibited either transcriptional up-regulation of HRK or down-regulation of BCLxL following copanlisib treatment. In all our DLBCL cell lines, PI3Kα/δ inhibition did not alter BCL2 expression. Given the genetic bases for BCL-2 deregulation in a subset of these DLBCLs, we next assessed the activity of the single-agent BCL2 inhibitor, venetoclax, in in vitro cytotoxicity assays. A subset of DLBCL cell lines was partially or completely resistant to venetoclax despite having genetic alterations of BCL2. We postulated that BCR-dependent DLBCLs with structural alterations of BCL2 might exhibit increased sensitivity to combined inhibition of PI3Kα/δ and BCL2 and assessed the cytotoxic activity of copanlisib (0-250 nM) and venetoclax (0-250 nM) in the DLBCL cell line panel. The copanlisib/venetoclax combination was highly synergistic (Chou-Talalay CI<1) in BCR-dependent DLBCL cell lines with genetic bases of BCL2 deregulation. We next assessed copanlisib and venetoclax activity in an in vivo xenograft model using a DLBCL cell line with PTENdel and BCL2 translocation (LY1). In this model, single-agent copanlisib did not delay tumor growth or improve survival. Single-agent venetoclax delayed tumor growth and improved median survival (27 vs 51 days, p<0.0001). Most notably, we found that the combination of copanlisib and venetoclax delayed tumor growth significantly longer than single-agent venetoclax (p<0.0001). Additionally, the combined therapy significantly increased survival in comparison with venetoclax alone (median survival 51 days vs not reached, p<0.0013). Taken together, these results provide in vitro and in vivo pre-clinical evidence for the rational combination of PI3Kα/δ and BCL2 blockade and set the stage for clinical evaluation of copanlisib/venetoclax therapy in patients with genetically defined relapsed/refractory DLBCL. Disclosures Letai: AbbVie: Consultancy, Other: Lab research report; Flash Therapeutics: Equity Ownership; Novartis: Consultancy, Other: Lab research report; Vivid Biosciences: Equity Ownership; AstraZeneca: Consultancy, Other: Lab research report. Shipp:AstraZeneca: Honoraria; Merck: Research Funding; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Research Funding.



Author(s):  
Candy Rivas ◽  
Michael Yee ◽  
Kenneth Addison ◽  
Marissa Lovett ◽  
Kasturi Pal ◽  
...  

Background and Purpose: Despite availability of a variety of treatment options, many asthma patients have poorly controlled disease with frequent exacerbations. Proteinase-activated receptor-2 (PAR2) has been identified in pre-clinical animal models as important to asthma initiation and progression following allergen exposure. Proteinase activation of PAR2 induces intracellular Ca2+, mitogen activated protein kinase (MAPK) and -arrestin signaling the airway, leading to both inflammatory and protective effects. We have developed C391, a potent PAR2 antagonist effective in blocking peptidomimetic- and trypsin-induced PAR2 signaling in vitro as well as reducing inflammatory PAR2-associated pain in vivo. We hypothesized that PAR2 reduction with C391 would attenuate allergen-induced asthma indicators in murine models. Experimental Approach: We evaluated the ability for C391 to alter Alternaria alternata-induced PAR2 signaling pathways in vitro using a human airway epithelial cell line that naturally expresses PAR2 (16HBE14o-) and a transfected embryonic cell line (HEK 293). We next evaluated the ability for C391 to reduce A. alternata-induced asthma indicators in vivo in two murine strains. Key Results: C391 blocked A. alternata-induced, PAR2-dependent Ca2+ and MAPK signaling in 16HBE14o- cells, as well as -arrestin recruitment in HEK 293 cells. C391 effectively attenuated A. alternata-induced inflammation, mucus production, mucus cell hyperplasia and airway hyperresponsiveness in acute asthma murine models. Conclusions and Implications: To our knowledge, this is the first demonstration of pharmacological intervention of PAR2 to reduce allergen-induced asthma indicators in vivo. These data support further development of PAR2 antagonists as potential first-in-class allergic asthma drugs.



2020 ◽  
Author(s):  
Jan Philip Suppelna ◽  
Kamran Harati ◽  
Andrea Rittig ◽  
Ingo Stricker ◽  
Markus Lehnhardt ◽  
...  

Abstract Background: The concept of a multimodality therapy in the treatment of soft tissue sarcomas (STS) has been discussed with controversy. Surgical resection with clear margins and radiation therapy remain gold standard in STS therapy. It is still questionable whether a systemic therapy with chemotherapeutics has a positive impact on the overall survival rate especially in early stages of disease, because the therapeutic effect in the treatment of STS is limited by its toxicities and its low responding rates. Treatment options are rare. As a result the search for combination therapies by using low dose approaches is of high importance. Recent studies showed the therapeutic efficiency of a designer host defense-like lytic D,L- amino acid peptide [D]-K 3 H 3 L 9 . Therefore we tested a combination of this peptide with Doxorubicin on two different sarcoma cell lines in vitro and also in a syngeneic immunocompetent murine fibrosarcoma mouse model. Methods: In vitro the human synovial sarcoma cell line SW 982 and the murine fibrosarcoma cell line BFS-1 were exposed to the oncolytic peptide [D]-K 3 H 3 L 9 , to the Anthracycline Doxorubicin and to both agents simultaneously. In vivo the murine fibrosarcoma cell line BFS-1 was injected subcutaneously into the syngeneic mice. When the tumors engrafted the oncolytic designer peptide [D]-K 3 H 3 L 9 , Doxorubicin or a combination of both was administered thrice a week for a three weeks’ follow-up. Results: The combination treatment approach using an oncolytic designer host defense peptide and Doxorubicin inhibited the in vitro sarcoma cell proliferation significantly. The single therapies, either with local intratumoral application of [D]-K 3 H 3 L 9 or with intraperitoneal application of Doxorubicin in the syngeneic mouse model, inhibited at least the tumor progression. The combination of both substances revealed a significant inhibition of tumor growth and weight. Conclusion: The in vivo low dose combination schedule inhibited the tumor growth significantly. Histological analyses of the tumor sections revealed an antiproliferative and antiangiogenic effect. So, these results demonstrate the effectiveness of combined low-dose application forms with designer host defense-like lytic peptides and chemotherapeutics.



Sign in / Sign up

Export Citation Format

Share Document