scholarly journals RETRACTION: Illuminating the dark road from schizophrenia genetic associations to disease mechanisms

2016 ◽  
Vol 4 (2) ◽  
pp. 240-251 ◽  
Author(s):  
Ming Li ◽  
Daniel R Weinberger

Abstract Recent large-scale genome-wide association studies (GWAS) have enabled the discovery of common genetic variations contributing to risk architectures of schizophrenia in human populations; however, the majority of GWAS-identified variants are located in large genomic regions spanning multiple genes, and recognizing the precise targets and mechanisms of these clinical associations is now the major challenge. Here, we review recent progress in schizophrenia genetics, functional genomics and related neuroscience research, and propose a functional pipeline to translate schizophrenia GWAS risk loci into disease biology and information for drug discovery. The pipeline includes identification of underlying molecular mechanisms using transcriptomic data in human brain, prioritization of putative functional causative variants by the integration of genetic epidemiological and bioinformatics methods as well as molecular approaches, and in vitro and in vivo experimental characterizations of the identified targeted species and causative variants to dissect the relevant disease biology. These approaches will accelerate progress from schizophrenia genetic studies to biological mechanisms and ultimately guide the development of prognostic, preventive and therapeutic measures.

Author(s):  
Moritz von Scheidt ◽  
Yuqi Zhao ◽  
Thomas Q. de Aguiar Vallim ◽  
Nam Che ◽  
Michael Wierer ◽  
...  

Background: Coronary artery disease (CAD) is a multifactorial condition with both genetic and exogenous causes. The contribution of tissue specific functional networks to the development of atherosclerosis remains largely unclear. The aim of this study was to identify and characterise central regulators and networks leading to atherosclerosis. Methods: Based on several hundred genes known to affect atherosclerosis risk in mouse (as demonstrated in knock-out models) and human (as shown by genome-wide association studies (GWAS)) liver gene regulatory networks were modeled. The hierarchical order and regulatory directions of genes within the network were based on Bayesian prediction models as well as experimental studies including chromatin immunoprecipitation DNA-Sequencing (ChIP-Seq), ChIP mass spectrometry (ChIP-MS), overexpression, siRNA knockdown in mouse and human liver cells, and knockout mouse experiments. Bioinformatics and correlation analyses were used to clarify associations between central genes and CAD phenotypes in both human and mouse. Results: The transcription factor MAFF interacted as a key driver of a liver network with three human genes at CAD GWAS loci and eleven atherosclerotic murine genes. Most importantly, expression levels of the low-density lipoprotein receptor ( LDLR ) gene correlated with MAFF in 600 CAD patients undergoing bypass surgery (STARNET) and a hybrid mouse diversity panel involving 105 different inbred mouse strains. Molecular mechanisms of MAFF were tested under non-inflammatory conditions showing a positive correlation between MAFF and LDLR in vitro and in vivo . Interestingly, after LPS stimulation (inflammatory conditions) an inverse correlation between MAFF and LDLR in vitro and in vivo was observed. ChIP-MS revealed that the human CAD GWAS candidate BACH1 assists MAFF in the presence of LPS stimulation with respective heterodimers binding at the MAF recognition element (MARE) of the LDLR promoter to transcriptionally downregulate LDLR expression. Conclusions: The transcription factor MAFF was identified as a novel central regulator of an atherosclerosis/CAD relevant liver network. MAFF triggered context specific expression of LDLR and other genes known to affect CAD risk. Our results suggest that MAFF is a missing link between inflammation, lipid and lipoprotein metabolism and a possible treatment target.


2021 ◽  
Vol 22 (14) ◽  
pp. 7311
Author(s):  
Mateusz Wawro ◽  
Jakub Kochan ◽  
Weronika Sowinska ◽  
Aleksandra Solecka ◽  
Karolina Wawro ◽  
...  

The members of the ZC3H12/MCPIP/Regnase family of RNases have emerged as important regulators of inflammation. In contrast to Regnase-1, -2 and -4, a thorough characterization of Regnase-3 (Reg-3) has not yet been explored. Here we demonstrate that Reg-3 differs from other family members in terms of NYN/PIN domain features, cellular localization pattern and substrate specificity. Together with Reg-1, the most comprehensively characterized family member, Reg-3 shared IL-6, IER-3 and Reg-1 mRNAs, but not IL-1β mRNA, as substrates. In addition, Reg-3 was found to be the only family member which regulates transcript levels of TNF, a cytokine implicated in chronic inflammatory diseases including psoriasis. Previous meta-analysis of genome-wide association studies revealed Reg-3 to be among new psoriasis susceptibility loci. Here we demonstrate that Reg-3 transcript levels are increased in psoriasis patient skin tissue and in an experimental model of psoriasis, supporting the immunomodulatory role of Reg-3 in psoriasis, possibly through degradation of mRNA for TNF and other factors such as Reg-1. On the other hand, Reg-1 was found to destabilize Reg-3 transcripts, suggesting reciprocal regulation between Reg-3 and Reg-1 in the skin. We found that either Reg-1 or Reg-3 were expressed in human keratinocytes in vitro. However, in contrast to robustly upregulated Reg-1 mRNA levels, Reg-3 expression was not affected in the epidermis of psoriasis patients. Taken together, these data suggest that epidermal levels of Reg-3 are negatively regulated by Reg-1 in psoriasis, and that Reg-1 and Reg-3 are both involved in psoriasis pathophysiology through controlling, at least in part different transcripts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ivy Aneas ◽  
Donna C. Decker ◽  
Chanie L. Howard ◽  
Débora R. Sobreira ◽  
Noboru J. Sakabe ◽  
...  

AbstractGenome-wide association studies (GWAS) have implicated the IL33 locus in asthma, but the underlying mechanisms remain unclear. Here, we identify a 5 kb region within the GWAS-defined segment that acts as an enhancer-blocking element in vivo and in vitro. Chromatin conformation capture showed that this 5 kb region loops to the IL33 promoter, potentially regulating its expression. We show that the asthma-associated single nucleotide polymorphism (SNP) rs1888909, located within the 5 kb region, is associated with IL33 gene expression in human airway epithelial cells and IL-33 protein expression in human plasma, potentially through differential binding of OCT-1 (POU2F1) to the asthma-risk allele. Our data demonstrate that asthma-associated variants at the IL33 locus mediate allele-specific regulatory activity and IL33 expression, providing a mechanism through which a regulatory SNP contributes to genetic risk of asthma.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Mikhaila A Smith ◽  
Jian Cui ◽  
Sumeet A Kheterpal ◽  
Daniel J Rader ◽  
Robert C Bauer

Tribbles-1 (TRIB1) was recently identified through genome-wide association studies as a novel mediator of plasma lipids and coronary artery disease in humans. While subsequent in vivo mouse work confirmed a role for hepatic TRIB1 in these associations, little is known about metabolic roles for extra-hepatic Trib1. Interestingly, SNPs near the TRIB1 gene are significantly associated with circulating adiponectin levels in humans, suggesting a metabolic role for adipose TRIB1 . To further investigate this, we generated adipose-specific Trib1 KO mice (Trib1_ASKO) by crossing Trib1 cKO mice to transgenic Adiponectin-Cre mice. Chow-fed Trib1_ASKO mice exhibited no differences in adipose tissue mass and overall body mass as compared to control littermates (N=8/group). However, Trib1_ASKO mice had reduced total (-16.9%, p <0.01), HDL (-16.7%, p <0.01), and non-HDL cholesterol (-17.3%, p =0.068), as well as plasma triglycerides (-28.6%, p <0.001) as compared to WT mice. Trib1_ASKO mice also had increased plasma adiponectin levels, a finding more pronounced in female mice (+33.3%, p <0.001) than in males (+16.4%, p =0.072). Despite this increase, transcript levels of adipoQ were moderately decreased in Trib1_ASKO mice, suggesting a post-transcriptional mode of regulation. Transcript and protein levels of C/EBPα, the best described target of Trib1 and a key regulator of adipogenesis, remained unchanged. To further investigate the metabolic consequences of adipose-specific KO of Trib1 , WT and Trib1_ASKO mice were fed high-fat diet (HFD, 45% kCal fat) for 12 weeks to induce obesity. HFD-fed Trib1_ASKO mice had reduced fasting plasma glucose (-22.3%, p <0.05), insulin (-38.2%, p <0.05), and glucose tolerance (-19.8% AUC, p <0.05) compared to control mice. Body mass and fat mass of HFD-fed Trib1_ASKO mice remained unchanged from WT, and the reductions in plasma lipids and increase in plasma adiponectin persisted in the HFD-fed state. In summary, we present here the first in vivo validation of the human genetic association between TRIB1 and plasma adiponectin, and provide evidence suggesting that adipose TRIB1 contributes to the genetic associations observed in humans between TRIB1 and multiple metabolic parameters.


2020 ◽  
pp. 1-6 ◽  
Author(s):  
Wan Zhao ◽  
Qiumei Zhang ◽  
Xiongying Chen ◽  
Yang Li ◽  
Xiaohong Li ◽  
...  

Abstract Background The Arsenic (+3 oxidation state) methyltransferase (AS3MT) gene has been identified as a top risk gene for schizophrenia in several large-scale genome-wide association studies. A variable number tandem repeat (VNTR) of this gene is the most significant expression quantitative trait locus, but its role in brain activity in vivo is still unknown. Methods We first performed a functional magnetic resonance imaging (fMRI) scan of 101 healthy subjects during a memory span task, trained all subjects on an adaptive memory span task for 1 month, and finally performed another fMRI scan after the training. After excluding subjects with excessive head movements for one or more scanning sessions, data from 93 subjects were included in the final analyses. Results The VNTR was significantly associated with both baseline brain activation and training-induced changes in multiple regions including the prefrontal cortex and the anterior and posterior cingulate cortex. Additionally, it was associated with baseline brain activation in the striatum and the parietal cortex. All these results were corrected based on the family-wise error rate method across the whole brain at the peak level. Conclusions This study sheds light on the role of AS3MT gene variants in neural plasticity related to memory span training.


2017 ◽  
Vol 242 (13) ◽  
pp. 1325-1334 ◽  
Author(s):  
Yizhou Zhu ◽  
Cagdas Tazearslan ◽  
Yousin Suh

Genome-wide association studies have shown that the far majority of disease-associated variants reside in the non-coding regions of the genome, suggesting that gene regulatory changes contribute to disease risk. To identify truly causal non-coding variants and their affected target genes remains challenging but is a critical step to translate the genetic associations to molecular mechanisms and ultimately clinical applications. Here we review genomic/epigenomic resources and in silico tools that can be used to identify causal non-coding variants and experimental strategies to validate their functionalities. Impact statement Most signals from genome-wide association studies (GWASs) map to the non-coding genome, and functional interpretation of these associations remained challenging. We reviewed recent progress in methodologies of studying the non-coding genome and argued that no single approach allows one to effectively identify the causal regulatory variants from GWAS results. By illustrating the advantages and limitations of each method, our review potentially provided a guideline for taking a combinatorial approach to accurately predict, prioritize, and eventually experimentally validate the causal variants.


2019 ◽  
Author(s):  
Tyler J. Marquart ◽  
Ryan M. Allen ◽  
Mary R. Chen ◽  
Gerald W. Dorn ◽  
Scot J. Matkovich ◽  
...  

Statins are the most common pharmacologic intervention in hypercholesterolemic patients, and their use is recognized as a key medical advance leading to a 50% decrease in deaths from heart attack or stroke over the past 30 years. The atheroprotective outcomes of statins are largely attributable to the accelerated hepatic clearance of low-density lipoprotein (LDL)-cholesterol from circulation, following the induction of the LDL receptor. However, multiple studies suggest that these drugs exert additional LDL–independent effects. The molecular mechanisms behind these so-called pleiotropic effects of statins, either beneficial or undesired, remain largely unknown. Here we determined the coding transcriptome, miRNome, and RISCome of livers from mice dosed with saline or atorvastatin to define a novel in vivo epitranscriptional regulatory pathway that links statins to hepatic gluconeogenesis, via the SREBP2–miR-183/96/182–TCF7L2 axis. Notably, multiple genome-wide association studies identified TCF7L2 (transcription factor 7 like 2) as a candidate gene for type 2 diabetes, independent of ethnicity. Conclusion: our data reveal an unexpected link between cholesterol and glucose metabolism, provides a mechanistic explanation to the elevated risk of diabetes recently observed in patients taking statins, and identifies the miR-183/96/182 cluster as an attractive pharmacological candidate to modulate non-canonical effects of statins.


2021 ◽  
Author(s):  
Runqing Yang ◽  
Yuxin Song ◽  
Li Jiang ◽  
Zhiyu Hao ◽  
Runqing Yang

Abstract Complex computation and approximate solution hinder the application of generalized linear mixed models (GLMM) into genome-wide association studies. We extended GRAMMAR to handle binary diseases by considering genomic breeding values (GBVs) estimated in advance as a known predictor in genomic logit regression, and then controlled polygenic effects by regulating downward genomic heritability. Using simulations and case analyses, we showed in optimizing GRAMMAR, polygenic effects and genomic controls could be evaluated using the fewer sampling markers, which extremely simplified GLMM-based association analysis in large-scale data. In addition, joint analysis for quantitative trait nucleotide (QTN) candidates chosen by multiple testing offered significant improved statistical power to detect QTNs over existing methods.


2018 ◽  
Vol 215 (3) ◽  
pp. 745-760 ◽  
Author(s):  
Wilbur M. Song ◽  
Satoru Joshita ◽  
Yingyue Zhou ◽  
Tyler K. Ulland ◽  
Susan Gilfillan ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disease that causes late-onset dementia. The R47H variant of the microglial receptor TREM2 triples AD risk in genome-wide association studies. In mouse AD models, TREM2-deficient microglia fail to proliferate and cluster around the amyloid-β plaques characteristic of AD. In vitro, the common variant (CV) of TREM2 binds anionic lipids, whereas R47H mutation impairs binding. However, in vivo, the identity of TREM2 ligands and effect of the R47H variant remain unknown. We generated transgenic mice expressing human CV or R47H TREM2 and lacking endogenous TREM2 in the 5XFAD AD model. Only the CV transgene restored amyloid-β–induced microgliosis and microglial activation, indicating that R47H impairs TREM2 function in vivo. Remarkably, soluble TREM2 was found on neurons and plaques in CV- but not R47H-expressing 5XFAD brains, although in vitro CV and R47H were shed similarly via Adam17 proteolytic activity. These results demonstrate that TREM2 interacts with neurons and plaques duing amyloid-β accumulation and R47H impairs this interaction.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Kevin Moreau ◽  
Angeleen Fleming ◽  
Sara Imarisio ◽  
Ana Lopez Ramirez ◽  
Jacob L. Mercer ◽  
...  

Abstract Genome-wide association studies have identified several loci associated with Alzheimer’s disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover.


Sign in / Sign up

Export Citation Format

Share Document