scholarly journals Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ivy Aneas ◽  
Donna C. Decker ◽  
Chanie L. Howard ◽  
Débora R. Sobreira ◽  
Noboru J. Sakabe ◽  
...  

AbstractGenome-wide association studies (GWAS) have implicated the IL33 locus in asthma, but the underlying mechanisms remain unclear. Here, we identify a 5 kb region within the GWAS-defined segment that acts as an enhancer-blocking element in vivo and in vitro. Chromatin conformation capture showed that this 5 kb region loops to the IL33 promoter, potentially regulating its expression. We show that the asthma-associated single nucleotide polymorphism (SNP) rs1888909, located within the 5 kb region, is associated with IL33 gene expression in human airway epithelial cells and IL-33 protein expression in human plasma, potentially through differential binding of OCT-1 (POU2F1) to the asthma-risk allele. Our data demonstrate that asthma-associated variants at the IL33 locus mediate allele-specific regulatory activity and IL33 expression, providing a mechanism through which a regulatory SNP contributes to genetic risk of asthma.

2020 ◽  
Author(s):  
Ivy Aneas ◽  
Donna C. Decker ◽  
Chanie L. Howard ◽  
Débora R. Sobreira ◽  
Noboru J. Sakabe ◽  
...  

ABSTRACTGenome-wide association studies (GWAS) have implicated the IL33 locus in asthma, but the underlying mechanisms remain unclear. Here, we identify a 5 kb region within the GWAS-defined segment that acts as a strong regulatory element in vivo and in vitro. Chromatin conformation capture showed that this 5 kb region loops to the IL33 promoter, potentially regulating its expression. Supporting this notion, we show that genotype at an asthma-associated SNP, rs1888909, located within the 5 kb region, is associated with IL33 gene expression in human airway epithelial cells and IL-33 protein expression in human plasma, potentially through differential binding of OCT-1 (POU2F1) to the asthma-risk allele. Our data demonstrate that asthma-associated variants at the IL33 locus mediate allele-specific regulatory activity and IL33 expression, providing a novel mechanism through which a regulatory SNP contributes to genetic risk of asthma.


2020 ◽  
Author(s):  
Ivy Aneas ◽  
Donna Decker ◽  
Chanie Howard ◽  
Debora Sobreira ◽  
Noboru Sakabe ◽  
...  

Abstract Genome-wide association studies (GWAS) have implicated the IL33 locus in asthma, but the underlying mechanisms remain unclear. Here, we identify a 5 kb region within the GWAS-defined segment that acts as a strong regulatory element in vivo and in vitro. Chromatin conformation capture showed that this 5 kb region loops to the IL33 promoter, potentially regulating its expression. We show that genotype at the asthma-associated SNP rs1888909, located within the 5 kb region, is associated with IL33 gene expression in human airway epithelial cells and IL-33 protein expression in human plasma, potentially through differential binding of OCT-1 (POU2F1) to the asthma-risk allele. Our data demonstrate that asthma-associated variants at the IL33 locus mediate allele-specific regulatory activity and IL33 expression, providing a novel mechanism through which a regulatory SNP contributes to genetic risk of asthma.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Antoinette F. van Ouwerkerk ◽  
Fernanda M. Bosada ◽  
Karel van Duijvenboden ◽  
Matthew C. Hill ◽  
Lindsey E. Montefiori ◽  
...  

Abstract Disease-associated genetic variants that lie in non-coding regions found by genome-wide association studies are thought to alter the functionality of transcription regulatory elements and target gene expression. To uncover causal genetic variants, variant regulatory elements and their target genes, here we cross-reference human transcriptomic, epigenomic and chromatin conformation datasets. Of 104 genetic variant regions associated with atrial fibrillation candidate target genes are prioritized. We optimize EMERGE enhancer prediction and use accessible chromatin profiles of human atrial cardiomyocytes to more accurately predict cardiac regulatory elements and identify hundreds of sub-threshold variants that co-localize with regulatory elements. Removal of mouse homologues of atrial fibrillation-associated regions in vivo uncovers a distal regulatory region involved in Gja1 (Cx43) expression. Our analyses provide a shortlist of genes likely affected by atrial fibrillation-associated variants and provide variant regulatory elements in each region that link genetic variation and target gene regulation, helping to focus future investigations.


2009 ◽  
Vol 53 (8) ◽  
pp. 3285-3293 ◽  
Author(s):  
Carolyn L. Cannon ◽  
Lisa A. Hogue ◽  
Ravy K. Vajravelu ◽  
George H. Capps ◽  
Aida Ibricevic ◽  
...  

ABSTRACT The expanding clinical challenge of respiratory tract infections due to resistant bacteria necessitates the development of new forms of therapy. The development of a compound composed of silver coupled to a methylated caffeine carrier (silver carbene complex 1 [SCC1]) that demonstrated in vitro efficacy against bacteria, including drug-resistant organisms, isolated from patients with respiratory tract infections was described previously. The findings of current in vitro studies now suggest that bactericidal concentrations of SCC1 are not toxic to airway epithelial cells in primary culture. Thus, it was hypothesized that SCC1 could be administered by the aerosolized route to concentrate delivery to the lung while minimizing systemic toxicity. In vivo, aerosolized SCC1 delivered to mice resulted in mild aversion behavior, but it was otherwise well tolerated and did not cause lung inflammation following administration over a 5-day period. The therapeutic efficacy of SCC1 compared to that of water was shown in a 3-day prophylaxis protocol, in which mice infected with a clinical strain of Pseudomonas aeruginosa had increased survival, decreased amounts of bacteria in the lung, and a lower prevalence of bacteremia. Similarly, by using an airway infection model in which bacteria were impacted in the airways by agarose beads, the administration of SCC1 was significantly superior to water in decreasing the lung bacterial burden and the levels of bacteremia and markers of airway inflammation. These observations indicate that aerosolized SCC1, a novel antimicrobial agent, warrants further study as a potential therapy for bacterial respiratory tract infections.


2008 ◽  
Vol 295 (2) ◽  
pp. L303-L313 ◽  
Author(s):  
Aura Perez ◽  
Anna M. van Heeckeren ◽  
David Nichols ◽  
Sanhita Gupta ◽  
Jean F. Eastman ◽  
...  

The pathophysiology of cystic fibrosis (CF) inflammatory lung disease is not well understood. CF airway epithelial cells respond to inflammatory stimuli with increased production of proinflammatory cytokines as a result of increased NF-κB activation. Peroxisome proliferator-activated receptor-γ (PPARγ) inhibits NF-κB activity and is reported to be reduced in CF. If PPARγ participates in regulatory dysfunction in the CF lung, perhaps PPARγ ligands might be useful therapeutically. Cell models of CF airway epithelium were used to evaluate PPARγ expression and binding to NF-κB at basal and under conditions of inflammatory stimulation by Pseudomonas aeruginosa or TNFα/IL-1β. An animal model of CF was used to evaluate the potential of PPARγ agonists as therapeutic agents in vivo. In vitro, PPARγ agonists reduced IL-8 and MMP-9 release from airway epithelial cells in response to PAO1 or TNFα/IL-1β stimulation. Less NF-κB bound to PPARγ in CF than normal cells, in two different assays; PPARγ agonists abrogated this reduction. PPARγ bound less to its target DNA sequence in CF cells. To test the importance of the reported PPARγ inactivation by phosphorylation, we observed that inhibitors of ERK, but not JNK, were synergistic with PPARγ agonists in reducing IL-8 secretion. In vivo, administration of PPARγ agonists reduced airway inflammation in response to acute infection with P. aeruginosa in CF, but not wild-type, mice. In summary, PPARγ inhibits the inflammatory response in CF, at least in part by interaction with NF-κB in airway epithelial cells. PPARγ agonists may be therapeutic in CF.


2018 ◽  
Vol 215 (3) ◽  
pp. 745-760 ◽  
Author(s):  
Wilbur M. Song ◽  
Satoru Joshita ◽  
Yingyue Zhou ◽  
Tyler K. Ulland ◽  
Susan Gilfillan ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disease that causes late-onset dementia. The R47H variant of the microglial receptor TREM2 triples AD risk in genome-wide association studies. In mouse AD models, TREM2-deficient microglia fail to proliferate and cluster around the amyloid-β plaques characteristic of AD. In vitro, the common variant (CV) of TREM2 binds anionic lipids, whereas R47H mutation impairs binding. However, in vivo, the identity of TREM2 ligands and effect of the R47H variant remain unknown. We generated transgenic mice expressing human CV or R47H TREM2 and lacking endogenous TREM2 in the 5XFAD AD model. Only the CV transgene restored amyloid-β–induced microgliosis and microglial activation, indicating that R47H impairs TREM2 function in vivo. Remarkably, soluble TREM2 was found on neurons and plaques in CV- but not R47H-expressing 5XFAD brains, although in vitro CV and R47H were shed similarly via Adam17 proteolytic activity. These results demonstrate that TREM2 interacts with neurons and plaques duing amyloid-β accumulation and R47H impairs this interaction.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1248
Author(s):  
Alan J. Hibbitts ◽  
Joanne M. Ramsey ◽  
James Barlow ◽  
Ronan MacLoughlin ◽  
Sally-Ann Cryan

Inhalation offers a means of rapid, local delivery of siRNA to treat a range of autoimmune or inflammatory respiratory conditions. This work investigated the potential of a linear 10 kDa Poly(ethylene glycol) (PEG)-modified 25 kDa branched polyethyleneimine (PEI) (PEI-LPEG) to effectively deliver siRNA to airway epithelial cells. Following optimization with anti- glyceraldehyde 3-phosphate dehydrogenase (GAPDH) siRNA, PEI and PEI-LPEG anti-IL8 siRNA nanoparticles were assessed for efficacy using polarised Calu-3 human airway epithelial cells and a twin stage impinger (TSI) in vitro lung model. Studies were then advanced to an in vivo lipopolysaccharide (LPS)-stimulated rodent model of inflammation. In parallel, the suitability of the siRNA-loaded nanoparticles for nebulization using a vibrating mesh nebuliser was assessed. The siRNA nanoparticles were nebulised using an Aerogen® Pro vibrating mesh nebuliser and characterised for aerosol output, droplet size and fine particle fraction. Only PEI anti-IL8 siRNA nanoparticles were capable of significant levels of IL-8 knockdown in vitro in non-nebulised samples. However, on nebulization through a TSI, only PEI-PEG siRNA nanoparticles demonstrated significant decreases in gene and protein expression in polarised Calu-3 cells. In vivo, both anti-CXCL-1 (rat IL-8 homologue) nanoparticles demonstrated a decreased CXCL-1 gene expression in lung tissue, but this was non-significant. However, PEI anti-CXCL-1 siRNA-treated rats were found to have significantly less infiltrating macrophages in their bronchoalveolar lavage (BAL) fluid. Overall, the in vivo gene and protein inhibition findings indicated a result more reminiscent of the in vitro bolus delivery rather than the in vitro nebulization data. This work demonstrates the potential of nebulised PEI-PEG siRNA nanoparticles in modulating pulmonary inflammation and highlights the need to move towards more relevant in vitro and in vivo models for respiratory drug development.


Sign in / Sign up

Export Citation Format

Share Document