scholarly journals Single lithium-ion channel polymer binder for stabilizing sulfur cathodes

2019 ◽  
Vol 7 (2) ◽  
pp. 315-323 ◽  
Author(s):  
Chaoqun Niu ◽  
Jie Liu ◽  
Tao Qian ◽  
Xiaowei Shen ◽  
Jinqiu Zhou ◽  
...  

Abstract Lithium–sulfur batteries have great potential for high-performance energy-storage devices, yet the severe diffusion of soluble polysulfide to electrolyte greatly limits their practical applications. To address the above issues, herein we design and synthesize a novel polymer binder with single lithium-ion channels allowing fast lithium-ion transport while blocking the shuttle of unnecessary polysulfide anions. In situ UV–vis spectroscopy measurements reveal that the prepared polymer binder has effective immobilization to polysulfide intermediates. As expected, the resultant sulfur cathode achieves an excellent specific capacity of 1310 mAh g−1 at 0.2 C, high Coulombic efficiency of 99.5% at 0.5 C after 100 cycles and stable cycling performance for 300 cycles at 1 C (1 C = 1675 mA g−1). This study reports a new avenue to assemble a polymer binder with a single lithium-ion channel for solving the serious problem of energy attenuation of lithium–sulfur batteries.

Author(s):  
Maru Dessie Walle ◽  
You-Nian Liu

AbstractThe lithium–sulfur (Li–S) batteries are promising because of the high energy density, low cost, and natural abundance of sulfur material. Li–S batteries have suffered from severe capacity fading and poor cyclability, resulting in low sulfur utilization. Herein, S-DHCS/CNTs are synthesized by integration of a double-hollow carbon sphere (DHCS) with carbon nanotubes (CNTs), and the addition of sulfur in DHCS by melt impregnations. The proposed S-DHCS/CNTs can effectively confine sulfur and physically suppress the diffusion of polysulfides within the double-hollow structures. CNTs act as a conductive agent. S-DHCS/CNTs maintain the volume variations and accommodate high sulfur content 73 wt%. The designed S-DHCS/CNTs electrode with high sulfur loading (3.3 mg cm−2) and high areal capacity (5.6 mAh mg cm−2) shows a high initial specific capacity of 1709 mAh g−1 and maintains a reversible capacity of 730 mAh g−1 after 48 cycles at 0.2 C with high coulombic efficiency (100%). This work offers a fascinating strategy to design carbon-based material for high-performance lithium–sulfur batteries.


2021 ◽  
Author(s):  
Haiyang Liu ◽  
Jiaxing Wang ◽  
Miao SUN ◽  
Yu Wang ◽  
Runing Zhao ◽  
...  

Abstract Lithium-sulfur (Li-S) batteries have been considered to be one of the most promising energy storage devices in the next generation. However, the insulating properties of sulfur and the shuttle effect of soluble lithium polysulfides (LiPSs) seriously hinder the practical application of Li-S batteries. In this paper, a novel porous organic polymer (HUT3) was prepared based on the polycondensation between melamine and 1,4-phenylene diisocyanate. The micro morphology of HUT3 was improved by in-situ growth on different mass fractions of rGO (5%, 10%, 15%), and the obtained HUT3-rGO composites were employed as sulfur carriers in Li-S batteries with promoted the sulfur loading ratio and lithium ion mobility. Attributed to the synergistic effect of the chemisorption of polar groups and the physical constraints of HUT3 structure, HUT3-rGO/S electrodes exhibits excellent capacity and cyclability performance. For instance, HUT3-10rGO/S electrode exhibits a high initial specific capacity of 950 mAh g-1 at 0.2 C and retains a high capacity of 707 mAh g-1 after 500 cycles at 1 C. This work emphasizes the importance of the rational design of the chemical structure and opens up a simple way for the development of cathode materials suitable for high-performance Li-S batteries.


2021 ◽  
Vol 8 ◽  
Author(s):  
Dongdong Yu ◽  
Zhihong Tang ◽  
Haiyong He

Due to the high specific energy density, lithium-sulfur batteries (LSBs) have great potential in energy storage devices for electric vehicle and electronic equipment. However, poor conductivity of sulfur, large volume expansion, and lithium polysulfide dissolution limit LSBs application and promotion. In this work, graphitic hollow carbon fibers (HCF) were fabricated as a matrix to encapsulate sulfur. And nickel particles were introduced into fibers (Ni@HCF) to improve the cycle stability of sulfur cathode. On one hand, hollow structures can encapsulate sulfur and limit lithium polysulfides dissolution, and the graphitic carbon walls can provide a fast electron transport channel. On the other hand, nickel particles can accelerate the conversion of lithium polysulfides. The study results show that the initial discharge specific capacity of Ni@HCF/S cathodes reaches 1,252 mAh g−1 at the current density of 0.1C. And the capacity can be maintained at 558 mAh g−1 after 200 cycles at the current density of 1C.


2020 ◽  
Vol 10 (4) ◽  
pp. 1263
Author(s):  
Yunju Choi ◽  
Sun-Young Lee ◽  
Jong-Seong Bae ◽  
Sea-Jin Lee ◽  
Hyun Kyu Kim ◽  
...  

Lithium-sulfur (Li-S) batteries have shown a high theoretical specific capacity of 1675 mAh g−1. However, amongst the issues they have, the low electron conductivity of sulfur and its dissolution represent the biggest challenge limiting its practical applications. This contributes to the low utilization of the active sulfur at the cathode—a phenomenon known as the “shuttling effect.” To overcome these limitations, some strategies such as physical confinement (sulfur–carbon composite), chemical adsorption (N and/or S doping) electrolyte design, and separator design have already been proposed. Calcium citrate is the most attractive carbon source because no activation process is necessary and the fabrication process is very simple. In this experiment, we synthesized calcium citrate and sulfur (S) to conduct a charging–discharging test and compared them by adding thiourea (TU) as well as S in the carbonized calcium citrate (CaC). This effective and simple technique for material production can accommodate the charge/discharge reactions and preserve the structure over long cycles. A CaC/TU-S composite is acceptable for an initial discharge capacity of 1051.6 mAh g−1 over 100 cycles at 1 C. The results show that the CaC-S and CaC/TU-S composites have a good, stable specific capacity.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Soochan Kim ◽  
Simindokht Shirvani-Arani ◽  
Sungsik Choi ◽  
Misuk Cho ◽  
Youngkwan Lee

AbstractLi–S batteries have attracted considerable interest as next-generation energy storage devices owing to high energy density and the natural abundance of sulfur. However, the practical applications of Li–S batteries are hampered by the shuttle effect of soluble lithium polysulfides (LPS), which results in low cycle stability. Herein, a functional interlayer has been developed to efficiently regulate the LPS and enhance the sulfur utilization using hierarchical nanostructure of C3N4 (t-C3N4) embedded with Fe3O4 nanospheres. t-C3N4 exhibits high surface area and strong anchoring of LPS, and the Fe3O4/t-C3N4 accelerates the anchoring of LPS and improves the electronic pathways. The combination of these materials leads to remarkable battery performance with 400% improvement in a specific capacity and a low capacity decay per cycle of 0.02% at 2 C over 1000 cycles, and stable cycling at 6.4 mg cm−2 for high-sulfur-loading cathode.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Yongsheng Zhou ◽  
Yingchun Zhu ◽  
Bingshe Xu ◽  
Xueji Zhang ◽  
Khalid A. Al-Ghanim ◽  
...  

Abstract Lithium-ion batteries (LIBs) are considered new generation of large-scale energy-storage devices. However, LIBs suffer from a lack of desirable anode materials with excellent specific capacity and cycling stability. In this work, we design a novel hierarchical structure constructed by encapsulating cobalt sulfide nanowires within nitrogen-doped porous branched carbon nanotubes (NBNTs) for LIBs. The unique hierarchical Co9S8@NBNT electrode displayed a reversible specific capacity of 1310 mAh g−1 at a current density of 0.1 A g−1, and was able to maintain a stable reversible discharge capacity of 1109 mAh g−1 at a current density of 0.5 A g−1 with coulombic efficiency reaching almost 100% for 200 cycles. The excellent rate and cycling capabilities can be ascribed to the hierarchical porosity of the one-dimensional Co9S8@NBNT internetworks, the incorporation of nitrogen doping, and the carbon nanotube confinement of the active cobalt sulfide nanowires offering a proximate electron pathway for the isolated nanoparticles and shielding of the cobalt sulfide nanowires from pulverization over long cycling periods.


Author(s):  
Zijian Zheng ◽  
Huan Ye ◽  
Zaiping Guo

Lithium–sulfur (Li–S) batteries have emerged as promising energy storage devices due to their high theoretical specific energy densities; their practical applications, however, have been restricted due to their poor cycling...


NANO ◽  
2021 ◽  
pp. 2150029
Author(s):  
Qian Zhang ◽  
Renxia Zhu ◽  
Chenyu Zhao ◽  
Runze Fan ◽  
Yong Zhang ◽  
...  

Application of lithium-sulfur battery has been limited due to polysulfide dissolution, the insulating nature of sulfur and the volumetric strain produced during charge and discharge process. To improve the performance of Li-S batteries, two kinds of bimetallic sulfides of NiCo2S4 with flaky (F-NiCo2S4) and sea urchin-like (S-NiCo2S4) structures were synthesized by using simple hydrothermal method, which were used as sulfur carriers in lithium-sulfur batteries and showed excellent electrochemical properties. At 0.2[Formula: see text]C, both electrodes of F-NiCo2S4/S and S-NiCo2S4/S have high pristine discharge specific capacities of 986[Formula: see text]mAh[Formula: see text]g[Formula: see text] and 959[Formula: see text]mAh[Formula: see text]g[Formula: see text]. At high current density of 4[Formula: see text]C, the F-NiCo2S4/S electrode still has a high pristine discharge specific capacity of 673[Formula: see text]mAh[Formula: see text]g[Formula: see text] and a coulombic efficiency of 97.00%. The specific capacity can remain at 526[Formula: see text]mAh[Formula: see text]g[Formula: see text] with a low average attenuation of 0.17% even after 130 cycles. The excellent electrochemical performances of the cathode material can be ascribed to the synergistic effect of tubular morphology, good electrical conductivity and strong adsorption ability of NiCo2S4 matrix for polysulfide. The job provides a new scheme and material for application of lithium-sulfur batteries with high performance.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Hong-Sik Kim ◽  
Hui-Ju Kang ◽  
Hongjin Lim ◽  
Hyun Jin Hwang ◽  
Jae-Woo Park ◽  
...  

To prevent global warming, ESS development is in progress along with the development of electric vehicles and renewable energy. However, the state-of-the-art technology, i.e., lithium-ion batteries, has reached its limitation, and thus the need for high-performance batteries with improved energy and power density is increasing. Lithium-sulfur batteries (LSBs) are attracting enormous attention because of their high theoretical energy density. However, there are technical barriers to its commercialization such as the formation of dendrites on the anode and the shuttle effect of the cathode. To resolve these issues, a boron nitride nanotube (BNNT)-based separator is developed. The BNNT is physically purified so that the purified BNNT (p−BNNT) has a homogeneous pore structure because of random stacking and partial charge on the surface due to the difference of electronegativity between B and N. Compared to the conventional polypropylene (PP) separator, the p−BNNT loaded PP separator prevents the dendrite formation on the Li metal anode, facilitates the ion transfer through the separator, and alleviates the shuttle effect at the cathode. With these effects, the p−BNNT loaded PP separators enable the LSB cells to achieve a specific capacity of 1429 mAh/g, and long-term stability over 200 cycles.


Nanomaterials ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 177 ◽  
Author(s):  
Guodong Han ◽  
Xin Wang ◽  
Jia Yao ◽  
Mi Zhang ◽  
Juan Wang

Due to the “shuttle effect”, the cycle performance of lithium sulfur (Li-S) battery is poor and the capacity decays rapidly. Replacing lithium-ion battery is the maximum problem to be overcome. In order to solve this problem, we use a cage like microporous MOF(CPM-5) as a carbon source, which is carbonized at high temperature to get a micro-mesoporous carbon composite material. In addition, indium oxide particles formed during carbonization are deposited on CPM-5 structure, forming a simple core-shell structure CPM-5-C-600. When it is used as the cathode of Li-S battery, the small molecule sulfide can be confined in the micropores, while the existence of large pore size mesopores can provide a channel for the transmission of lithium ions, so as to improve the conductivity of the material and the rate performance of the battery. After 100 cycles, the specific capacity of the battery can be still maintained at 650 mA h·g−1 and the Coulombic efficiency is close to 100%. When the rate goes up to 2 C, the first discharge capacity not only can reach 1400 mA h·g−1, but also still provides 500 mA h·g−1 after 200 cycles, showing excellent rate performance.


Sign in / Sign up

Export Citation Format

Share Document